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Abstract

This dissertation investigates three topics concerning variability and robustness in
speech perception: variability of the speech signal across speakers, variability due to
speaking rate effects, and the robustness of speech perception in noisy environments.

Given that the speech signal corresponding to a given phoneme can vary consid-
erably across speakers, invariant speech perception can be facilitated by normalizing
the signal across speakers. In chapter 1, 160 intrinsic and extrinsic speaker normaliza-
tion methods are compared using a neural network, fuzzy ARTMAP, and K-Nearest
Neighbor (K-NN) categorizers trained and tested on disjoint sets of speakers of the
Peterson-Barney vowel database. ARTMAP and K-NN show similar trends, with
K-NN performing better but requiring about ten times as much memory. The op-
timal intrinsic normalization method is bark scale using the differences between all
frequencies, while the optimal extrinsic method is linear transformation of the vowel
space to a canonical representation.

In chapter 2, psychophysical studies of adaptation to the mean silence duration
between two different stop consonants are examined. Using natural speech stimuli,

the first experiment shows that the category boundary between hearing only one
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or hearing both stop consonants varied as a function of the distribution of silent
intervals. The second experiment shows that the variance of the distribution did not
significantly affect the boundary, and the final experiment shows sequential effects
in the adaptation process. Finally, a model of the adaptation process is developed
which emulates the data.

In environments with multiple sound sources, the auditory system is capable of
teasing apart the impinging jumbled signal into different mental objects. Chapter 3
presents a neural network model of auditory scene analysis, which groups different
frequency components based on pitch and spatial location cues and allocates the
components to different objects. While location primes the grouping mechanism,
segregation is based solely on harmonicity. The model qualitatively emulates results
from psychophysical grouping experiments, such as how a tone sweeping upwards in
frequency groups due to frequency proximity with a downward sweeping tone even
if noise exists at the intersection point; and illusory percepts, such as the illusion of

a tone continuing through noise.
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Chapter 1

Introduction

While machine speech recognition and an understanding of human speech perception
have advanced over the last several decades, the variabilities in the speech signal
still impede a veridical model of human speech perception and an adequate speech

recognition device (Klatt, 1992). The variabilities in the acoustic signal include:

e contextual variability, e.g. coarticulation, the acoustic cue for /d/ is different

for /da/ versus /di/,

e inter-speaker variability, e.g. dialects, different vocal tract sizes cause the
speech signal corresponding to the same phoneme to be quite variable across

speakers,

e intra-speaker variability, e.g. emotional state of the speaker, different speaking

rates,

e and variability due to environmental conditions, e.g. room reverberations,

microphone, background noise, other speakers.

Three research problems addressing variability and robustness in speech perception
are examined in this dissertation. The first research topic relates to inter-speaker vari-
ability, different vocal tract sizes; the second topic studies intra-speaker variability,
speaking rate effects; and the third topic investigates variability due to environmental

factors, background noise and other speakers.



The speech signal corresponding to a given phoneme can vary considerably across
speakers, due to differential vocal tract sizes. To achieve invariant speech perception
and recognition, the signal can be transformed to a more canonical representation,
or normalized across speakers, for easier classification. In Chapter 2, 160 preprocess-
ing, or normalization, methods are compared using a self-organizing neural network
classifier, fuzzy ARTMAP, and a nearest neighbor classifier, to determine which
combinations of preprocessing and classification system provide the most accurate
recognition system. The 160 methods are obtained by factorially varying eight dif-
ferent frequency scales with four combinations of the frequency components, and five
speaker adaptation schemes.

Durational factors, such as silent, intervals, act as acoustic cues in the perception
of phonemes and word boundaries. During variable-rate speech perception and recog-
nition, the distribution of these durational cues can influence how speech sounds are
categorized for purposes of recognition. Thus, in order for a listener to consistently
categorize these speech sounds, the listener must adapt to the speaker’s speech rate,
or perform normalization across time, and create a canonical representation for in-
variant identification. In Chapter 3, psychophysical studies using silent intervals are
performed to understand the specific nature of this adaptation process. The results
suggest that listeners base their judgments of these cues based on the mean silent
interval, where these intervals vary as a function of speaking rate. In deriving this
mean, listeners adapt to the mean interval within some time window.

In environments where there are multiple sound sources, listeners are able to
segregate the different signals arising from these sources even though there is only
one merged signal impinging upon the ear. This auditory scene analysis also helps
listeners to hear a particular speaker in noisy environments and in environments

with other speakers, e.g. at cocktail parties. It is thus a crucial step in segregating



speech sounds for purposes of perception and recognition. Two factors that influence
segregation, among others, are the pitch of a sound and its spatial location. A key
issue concerns how overlapping combinations of spectral components can be sepa-
rated into the pitches and locations of different acoustic sources. A neural network
model of auditory scene analysis that suggest how pitch and spatial location are used

for segregation is presented in Chapter 4.



Chapter 2

Speaker normalization methods for vowel
recognition: Comparative analysis using neural

network and nearest neighbor classifiers

2.1 Introduction

Human listeners are able to identify as a single phoneme a wide variety of speech sig-
nals produced by different speakers in different contexts. For example, the vowel /a/
is recognized despite the fact that the average F; formant frequency is approximately
660 Hz for males and 1020 Hz for children (Figure 2-1) (Peterson & Barney, 1952).
In order for humans to consistently categorize speech sounds from multiple speak-
ers, they must compensate for the variability of the speech signal across speakers.
Speaker normalization denotes the process whereby a listener compensates for indi-
vidual characteristics of a speech signal in order to extract invariant features needed
to identify the sound. The two main classes of normalization methods are intrinsic
and eztrinsic (Ainsworth, 1975; Nearey, 1989). Intrinsic normalization uses only the
information present in each vowel token. Extrinsic normalization uses information
from several vowel tokens of a given speaker.

Procedures are developed here that can be used to make systematic compar-
isons of the many speaker normalization schemes that have been proposed in recent
decades. To evaluate a given normalization method, the 1520 vowel token vectors,

consisting of the fundamental (Fp) and first three formants (Fy, F3, F3) of the Peter-
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Figure 2-1: Vowel space (mean Fy vs. F3) of all 76 speakers, and of 33 males,
28 females, and 15 children, for the ten vowels of the Peterson and Barney (1952)
database.



son and Barney (1952) database, are preprocessed using that method. Normalized
inputs from about 30% of the speakers are used to train three different classifiers:
a neural network, fuzzy ARTMAP (Cérpenter, Grossberg, Markuzon, Reynolds, &
Rosen, 1992) and two K-Nearest Neighbor (K-NN) systems (Dasarathy, 1991). The
remaining test data set is then presented to each classifier, which tries to identify
a test set input as one of ten vowel sounds. The normalization scheme in question
is evaluated in terms of the number of correct test set identifications made by each
of the classifiers. Speaker independence is required since the test set inputs and
the training set inputs are generated by disjoint sets of speakers (men, women, and
children). Comparative evaluations of 32 intrinsic and 128 extrinsic normalization
schemes are carried out using this method.

For the intrinsic normalization schemes, eight scales were compared: one non-
scaled scale; four psychophysical scales, bark scale, bark scale with end-correction,
mel scale, and equivalent rectangular bandwidth ERB (scale); and three log mea-
sures, a semitone scale, natural log scale, and log base 10 scale. For each of these
eight scales, four frequency combinations were tested by the categorizers: [Fj, Fj]
only; [Fg, F{, F3, F}); differences between all combinations of formants and F} (Diff
All); and a subset of the differences between the formants and Fy§ (Diff Subset).

For the extrinsic methods, speaker-specific adaptation was superimposed on each
of the 32 intrinsic normalization methods. Four types of extrinsic normalization
methods were tested: centroid subtraction across frequencies (CS), centroid subtrac-
tion for each frequency (CSi), linear scale (LS), and linear transformation (LT). The
CS method subtracts the mean frequency ( F ) across all frequencies from a speaker’s
set of vowels. The CSi method subtracts the mean frequency ( F; ) from its respec-
tive frequency in a speaker’s set of vowels. The LS method computes the minimum

and maximum value for each frequency across all the vowels of a given speaker, then



rescales every value for that frequency to the range [0,999]. Finally, the LT method
adaptively computes a matrix for each speaker to warp the vowel space to the mean
vowel space across all speakers.

The three pattern recognition systems (fuzzy ARTMAP, L; K-NN, and L; K-NN)
generally agreed on which normalization methods gave better predictive performance
on test set data. K-NN tended to outperform fuzzy ARTMAP by a few percent, but
also has greater storage requirements.

In general, the psychophysical measures outperformed the log measures. For
all the intrinsic and extrinsic methods, fuzzy ARTMAP performed best using bark
(or bark with end correction) Diff All. Although the K-NN categorizers’ optimal
performance varied more, the majority of the normalization methods performed best
with the psychophysical measures. For the intrinsic methods, K-NN algorithms
chose bark Diff All method. For the CS extrinsic method, they performed best
with ERB [F§, F{', Fy, F{] method. For the LS method, L;/L2 K-NN chose ERB
Diff All/bark Diff Subset. For the LT method, L;/L; K-NN performed best with
mel/ERB [F§, F{', F}, F{]. Finally, for the CSi method, the K-NN methods chose log
(Fy, FY', F}l, F}'}. Among the extrinsic methods, the order of performance consisted
of the following, from best to worst: LT, CSi, LS, and CS.

A primary goal of this paper is to develop an efficient, standard method to com-
pare and evaluate the many normalization methods in the literature. Other neural
network approaches have compared a limited number of normalization methods, of-
ten without speaker independence in the training and test sets.

Section 2.2 reviews some data on vowel perception as it applies to speaker nor-
malization. Section 2.3 discusses the intrinsic and extrinsic speaker normalization
methods that were tested. Section 2.4 describes the Peterson-Barney database. Sec-

tion 2.5 outlines the pattern recognition schemes, fuzzy ARTMAP and K-NN, used



to evaluate the normalization methods. Section 2.6 presents the response of the dif-

ferent categorizers to the different normalization methods, and Section 2.7 discusses

these results.

2.2 Speaker normalization

A variety of psychophysical experiments illustrate how listeners employ speaker nor-
malization. For example, Assmann, Nearey, and Hogan (1982) showed that listeners
identify fixed duration steady-state vowels with 86.2% to 91.5% accuracy. Jenkins,
Strange, and Edman (1983) showed that listeners perform at 88.2% when presented
with variable duration steady-state vowels. Thus, listeners are able to accurately
identify vowels without the benefit of transitional or durational information, even if
formant frequencies for different vowels overlap.

A different type of evidence for speaker normalization derives from speaker adap-
tation data. In particular, the identity of a test vowel can be changed if the formants
of vowels in the preceding carrier sentence are altered (Ladefoged & Broadbent,
1957; Ainsworth, 1975; Deschovitz, 1977; Nearey, 1978; Remez, Rubin, Nygaard,
& Howell, 1987; Nearey, 1989). Ladefoged and Broadbent (1957) showed that the
identity of a vowel in a test word (/bVt/) shifted when the formant frequency ranges

” was

of the preceding synthetic carrier sentence, “Please say what this word is ___,
modified. Remez et al. (1987) replicated Ladefoged and Broadbent’s experiment
using sinusoidal voices. Nearey (1978), using synthetic stimuli, showed that prior
presentation of an adult or child /i/ shifted vowel categories along a continuum of
Fy and F; values: vowel boundaries shifted towards higher frequencies if the child
/i/ preceded the formants. Deschovitz (1977), using natural speech stimuli, showed

that listeners are more error prone when identifying /bVt/ words spoken by an adult

male embedded within a child’s carrier sentence, “Please say - for me.” Similarly,



Stimuli  Mixed (%) Blocked (%)

/V/ 574 68.8 Strange et al. (1976)
/pVp/ 83.0 90.5 Strange et al. (1976)
/V/ 92.2 98.5 Macchi (1980)
JtVt/ 91.4 98.0 Macchi (1980)
/V/ 94.6 95.9 Assmann et al. (1982)
Gated /V/ 86.2 90.5 Assmann et al. (1982)

Table 2.1: Correct vowel identification rates for mixed and blocked speakers. After
Nearey (1989).

Ainsworth (1975) found that synthetic carrier vowels / i u a/ could influence the
vowel categories’ centers, with the vowel category boundaries shifting by as much as
16% depending on whether the listener perceived a male or a child speaker. Nearey
(1989) evaluated the effects of Fy and higher formants, as well as the range of Fy-F;
frequencies on vowel perception. Nearey, using either a high or low frequency range
for /i oV/, found that the higher formants had little influence while the ensemble
range of frequencies had the most influence, followed by Fp, which had more influence
on Fj than on Fj.

Other adaptation experiments show fewer errors occur during blocked conditions,
in which only one speaker’s vowel tokens are presented within a trial, than during
mixed conditions, in which the identity of the speaker varies randomly from token to
token within the trial (Strange, Verbrugge, Shankweiller, & Edman, 1976; Macchi,
1980; Assmann et al., 1982; Nearey, 1989) (Table 2.1).

2.3 Normalization methods

2.3.1 Intrinsic normalization methods

For the intrinsic normalization schemes, eight normalization methods were compared:
one nonscaled (N) scale; four psychophysical scales: bark scale (B) (Zwicker & Ter-

hardt, 1980), bark scale with end-correction (Be) (Traunmiiller, 1981), mel scale (M)
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(O’Shaughnessy, 1987), and equivalent rectangular bandwidth scale (ERB) (Moore
& Glasberg, 1983); and three log measures: a semitone scale (log1.06), natural log
scale (log.), and log base 10 scale (logyo).

The bark scale is a psychophysically-derived measure, which is thought to corre-
spond to internal bandpass filters, or critical bands. The critical band is the band-
width of a filter in which acoustic energy is integrated. The bark scale (B) transforms

Fy...F3to Fj...F3 according to the equation:

F! =13.0 * arctan(0.76 * F;/1000) + 3.5 * arctan(F;/7500)%, (2.1)

where F; is the i** frequency, in Hz. Bark scale with end-correction (Be) adjusts the
lower frequencies before converting to them to bark scale, frequencies below 150 Hz
are increased to 150 Hz; frequencies between 150 and 200 Hz are reduced to 0.8 F;+30;
and frequencies between 200 and 250 Hz are increased to 1.2F; — 50. This factor was
applied to correct for discrepancies at low frequencies between psychophysical data
and equation 2.1.

The mel scale (M), which is a psychophysical scale that is derived based on the

perceived pitch relationships of two tones, corresponds to the transformation:

The fourth psychophysical scale is the equivalent rectangular bandwidth (ERB) scale.
The ERB of a filter corresponds to the bandwidth of a rectangular filter, which passes
the same amount of power. While the ERB scale is similar to the bark scale, the two

scales differ for frequencies below 1000 Hz. The ERB scale is calculated by:

F! = 1117 * log,((F; + 312)/(F; + 14675)) + 43. (2.3)
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The three logarithmic measures consist of the semitone scale:

F{ = log, 06(F), (24)
the natural logarithm scale:
F{ = log.(Fy), (2.5)
and the log base 10 scale:
F{ = log;o( ). (2.6)

Each of the eight normalization scales was tested with four different combina-
tions: only the first two formants [F{, Fj]; the fundamental and all three formants
[F§, FY, F;, Fj]; the three differences F{ — F}, F3 — Fy{, F}— F} (Diff Subset); and all six
difference combinations Fj — F{, F} — F§, F§ — F§, F} — F{, F} — F{, F§— F} (Diff All).
Combining the 8 vowel space scales and the 4 frequency combinations, 32 intrinsic
methods were tested.

Syrdal and Gopal (1986) , using the bark scale with end correction (Be) and the
Diff Subset method, obtained a performance rate of 81.8% on the Peterson-Barney

database, using linear discriminant analysis (LDA) with the U (jacknife) method.

2.3.2 Extrinsic normalization methods

For the extrinsic methods, adaptation to a speaker was superimposed on each of
the 32 intrinsic normalization methods. Four types of extrinsic normalization were
tested: centroid subtraction across frequencies (CS), centroid subtraction for each
frequency (CSi), linear scale (LS), and linear transformation (LT). In all, 128 extrinsic

normalization schemes were tested: 4 speaker adaptations x 4 frequency combinations
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x 8 scales.
The CS method finds the mean frequency value ( F' ) across all transformed

frequencies of all the vowels of a given speaker and subtracts this value from F:

F'=F -TF. (2.7)

Nearey (1978) used the CS method with F; and F, in the constant log interval
hypothesis (CLIH) method. Assmann, Nearey and Hogan (1982) obtained 84% ac-
curacy using the CLIH method and LDA with the U method on 10 vowels spoken
by 5 male and 5 female speakers.

While the CS method has the advantage of simplicity, the results of Fant (1966,
1975) suggest that Fy and F; have different scalings. The CSi method extends the
CS method by computing the centroid ( F; ) for each transformed frequency and

subtracting this value from F:

F{'=F/ - F. (2.8)

The CLIH2 method (Nearey, 1978), and CLIH3 method (Assmann et al., 1982), cor-
responding to the use of two (F1, F3) or three formants (Fy, Fy, F3), are functionally
equivalent to the CSi method in a log vowel space. Assmann, Nearey, and Hogan
(1982) obtained 91% for CLIH2 and 93% for CLIH3 using LDA with the U method
on the speakers described above.

The linear scale (LS) approach (Gerstman, 1968) finds the minimum and maxi-
mum frequency values for each F! across all vowels of a given speaker, then rescales

each frequency to the range [0,999):

F'-" = 999 % (F:I _ F}min')/(Fimaz’ _ F‘.min’)' (2.9)
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Gerstman hereby obtained 97.5% on the Peterson-Barney database using a metric
derived from the database itself, so that training and testing occur on the same data
set.

In the LT method (Hindle, 1978; Watrous, 1993; Zahorian & Jagharghi, 1991), a
speaker-specific linear transformation matrix 4 transforms each speaker’s frequencies
into some prototypical frequency values. New frequencies are linear combinations of

the original transformed frequencies:

3
Fi” = Z a,-kF,: + Gi. (2.10)
k=0

The matrix A is derived using the least mean squares (LMS) algorithm (Widrow &
Stearns, 1985) to minimize the mean squared error between a given speaker’s funda-
mental and formant frequencies and the mean fundamental and formant frequencies
across all speakers for each vowel. Hindle (1978) found that the LT method gave
better performance than CS using the mean male, female, and child formant fre-
quencies from the Peterson-Barney database. Zahorian and Jagharghi (1991), using
the LT method, obtained 79.0% identification using a Bayesian maximum likelihood
classifier after training on 11 vowels from a given speaker. The database they used
consisted of the first three formants of 11 vowels, in 9 CVC contexts, spoken by 10
male, 10 female, and 10 child speakers. Watrous (1993), using a second-order back-
propagation neural network with the LT normalization method, achieved 93.2% using
only Fi and F; on the Peterson-Barney database. However, Watrous (1993) did not
use a separate set of speakers for training and testing.

Other normalization methods (Wakita, 1977; Bladon, Henton, & Pickering, 1984)
require greater knowledge than specified in the Peterson-Barney database, such as

knowledge of the spectral or temporal characteristics of a vowel.
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Number Arpabet IPA /hVd/
IY /i/  heed
IH /I/ hid
EH /e/ head
AE /2] had

AH /a/  hud

AA /a/  hod

AO [>/ hawed

UH /u/ hood

Uw [u/  whod
ER [/ heard

o © 0o W N

Table 2.2: Vowels used in the Peterson and Barney (1952) study.

2.4 Peterson-Barney vowel database

Watrous (1991) recompiled Peterson and Barney’s original data, which had prolif-
erated into several inconsistent versions. Peterson and Barney tape recorded vowel
data from 76 spéa.kers (33 males, 28 females, 15 children), each speaking 10 vowels
twice in a /hVd/ context (Table 2.2). Each vowel was analyzed during the steady-
state portion to obtain the frequency values of the first three formants, Fy, Fy, F3, as
well as the fundamental frequency, Fy. This yielded a total of 1520 vowel tokens (76
speakers x 10 vowels x 2 repetitions).

For the present study, the Peterson-Barney database was split into a training and
test set. Vowels spoken by approximately 30% of the speakers (10 male, 9 female,
and 5 children) were randomly chosen to comprise the training set, with 1040 vowels
spoken by the remaining speakers comprising the test set. The recognition task
was thus far more challenging than one in which test speakers were also part of the

training set.
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2.5 Algorithms for comparing normalization methods

2.5.1 Fuzzy ARTMAP

Fuzzy ARTMAP (Figure 2-2) is a self-organizing neural network algorithm for adap-
tive categorization and prediction of nonstationary databases (Carpenter, Grossberg,
& Reynolds, 1991a; Carpenter et al., 1992). During supervised training, the system
learns to map (transformed) frequency vectors to 10 vowel categories. ARTMAP
clusters frequency vectors on-line in one module (ART,) and vowel categories in a
second module (ART;). An intervening map field (F2%) adaptively associates fre-
quency categories to vowel categories. The main components of the fuzzy ARTMAP
system will now be outlined.

The ART, and ART, modules cluster the input vector and output vector, re-
spectively. An input a to ART, field F¢ is an M-dimensional vector with compo-
nent values between 0 and 1. Complement coding (Carpenter, Grossberg, & Rosen,
1991b) enables the system to encode both absent and present features. After com-
plement coding, the 2M-dimensional vector A = (a, a®) becomes the input to F?,
where af = 1 — ;. Activity at F? activates a category node J at Fg. This active
F3 category sends top-down signals to F}*, where internal system dynamics deter-
mine whether the match between the bottom-up input and the top-down learned
weight vector wj is good enough to permit learned weight changes. The matching,

or vigilance, criterion is satisfied if

palAl < |A Awyl, (2.11)

where p, € [0,1] is a dimensionless parameter called vigilance, and where A represents
the fuzzy AND, or component-wise minimum, operation. If the match does not

meet the vigilance criterion, category J is reset and another category node in Fg
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map field F%
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Frequencies 10 Vowel Categories

Figure 2-2: Fuzzy ARTMAP architecture with its three component modules: ART,,
ART,, and the map field F**. The ART, module transforms the M-dimensional
input vector a into a 2M-dimensional input vector A = (a, a®) at the F¢ field through
complement coding. A is the input to the ART, field F?. Similarly, the input to the
ART, field F} is the vector B = (b, b®). The activation of field F}? causes a category
to become active at F, which in turn leads to a prediction by ART, at the map field
Feb. 1f the prediction is disconfirmed at ART;, inhibition of the map field activity
starts the match tracking process: the ART, vigilance p, is raised slightly over the
match ratio. This in turn causes an ART, search which leads to either the activation
of another existing ART, category that correctly predicts B, or a new uncommitted
ART, category node.
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is selected. This search process continues until an active F§ node meets the match
criterion (2.11), or a new category is selected.

During fuzzy ARTMAP training, the input pattern (a) and output pattern (b)
select an FJ category node J and an F} category node K, respectively. The map
field F°* associates the two categories, unless J had previously learned to predict a
different F? category K. When such a predictive mismatch occurs, another F3§ node
is chosen through a fuzzy ARTMAP control process called match tracking. During
testing, an input pattern a presented to ART, activates a category in ART), via the

map field F,,. The chosen output pattern b then constitutes the test set prediction.

2.5.2 K-Nearest Neighbor

The K-Nearest Neighbor (K-NN) algorithm (Duda & Hart, 1973; Dasarathy, 1991)
finds, for each test point, the K nearest training points, with distance measured by
some metric. The vowel categories for the K neighbors are tallied, and the test point
is assigned to the vowel category with the largest number of votes. If a tie occurs
between two or more vowel categories, the category with the minimum total distance
is chosen. In the simulations, two different metrics, city block (L;) and Euclidean
(L2), were compared. The L; norm,.also used in fuzzy ARTMAP, equals the sum of

the absolute values of the differences between the vector components:

I =yl =3 |zi - gil. (2.12)

The L, norm, or Euclidean metric, is defined by:

Ix — yll2 = ‘/Z(zf - )2 (2.13)
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2.6 Comparative evaluation of speaker normalization meth-

ods

Preliminary simulations on different normalization methods were run to select param-
eters for the K-NN and fuzzy ARTMAP recognition systems. For fuzzy ARTMAP,
performance on the test set was evaluated after the system had achieved 100% correct
performance on the training set. For the K-NN systems, the number of neighbors
(K) was fixed at 10 throughout. Performance trends were fairly insensitive to system

parameters.

2.6.1 Intrinsic methods

Fuzzy ARTMAP and K-NN evaluations of the 32 intrinsic methods are shown in
Tables 2.3 and 2.4, respectively, and in Figure 2-3. Among the psychophysical mea-
sures, the bark and bark with end-correction perform slightly better than mel or
ERB scale, while there was little difference among the three log measures. Both the
psychophysical and log measures showed a slight advantage over the nonscaled for-
mants. The Diff methods increased the performance of the psychophysical measures
while decreasing the log measures. In fact, for all three classifiers, the best per-
formance for the log scales was achieved with [F§, Fy, F}, Fj]. However, the overall
best intrinsic normalization method is the Diff All method using bark or bark with
end-correction scaled formants. Fuzzy ARTMAP and L; K-NN achieved 83.1% and
85.5%, respectively, using bark scale; and Ly K-NN achieved 85.8% using bark scale

with end correction, just edging out bark scale (85.5%).

2.6.2 Extrinsic methods

In general, the LT method performed better than the other extrinsic schemes, as

follows.
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Vowel Space [FI, FJ] [F, Fi,FL, Fy]  Diff Subset Diff All
Scale Id %(Fp) Id %(F) 1d %(F&) 1d % (Fp)
N 1 664 (1231) 9 784 (63.5) 17 804 (55.8) 25 80.7 (57.5)
B 2 66.0 (123.7) 10 79.1(61.6) 18 81.4 (56.3) 26 83.1(43.9)
Be 3 658 (123.1) 11 78.6(63.9) 19 80.8(54.8) 27 83.1(43.4)
M 4 65.5(124.3) 12 79.0 (62.2) 20 79.8 (57.1) 28 81.6 (46.3)
ERB 5 64.9(124.8) 13 79.1 (62.3) 21 77.7(66.1) 29 79.4 (49.4)
logios 6 65.4 (1220) 14 79.4 (60.7) 22 72.1(73.2) 30 74.2 (58.9)
log. 7 655 (121.9) 15 79.4 (60.6) 23 723 (72.5) 31 74.0 (58.8)
logio 8 65.5(122.1) 16 79.4 (60.8) 24 71.9 (73.9) 32 74.2 (58.9)

Table 2.3: Fuzzy ARTMAP test set performance with intrinsic normalization. Num-
bers in parentheses give the average number of F§ nodes after training. Vowel space
scales: N = nonscaled, B = bark scaled, Be = bark scaled with end-correction,
M = mel scaled, ERB = equivalent rectangular bandwidth scaled, log. = natural
logarithm scaled, logi06 = semitone scaled, and logip = log base 10 scaled. In-
trinsic normalization methods 1-8 use only the first two formants [F{, Fj]; meth-
ods 9-16 use [F}, F}, F3, F3); for methods 17-32, differences between the transformed
Fj,..., F} were computed. Methods 17-24 (Diff Subset) employ the three differ-
ences F| — F§, F} — F|, F§ — F3; methods 25-32 (Diff All) employ all six differences
F! — Fi, F} — F§, F} — F},F} — F!,F} — F!,F} — F}. Fuzzy ARTMAP simulation
parameters: g, = 0.0, a« = 0.1, 8 = 1.0.



Vowel Space  [F{, F3] [Fg, F{, F3, F§] Diff Subset  Diff All
Scale d % W % d % W %
L, K-NN

N 1 752 9 76.8 17 789 25 76.8
B 2 743 10 82.6 18 83.7 26 85.5
Be 3 73 11 81.4 19 841 27 85.4
M 4 746 12 82.0 20 834 28 829
ERB 5 173.8 13 83.5 21 821 29 821
log1 .06 6 745 14 82.0 22 761 30 77.2
log. 7 745 15 82.0 23 760 31 773
logio 8 745 16 82.1 24 760 32 772
Lz K-NN

N 1 752 9 75.1 17 771 25 76.3
B 2 7.1 10 82.6 18 845 26 85.5
Be 3 7.1 1 83.1 19 84.0 27 85.8
M 4 1753 12 82.4 20 83.0 28 825
ERB 5 749 13 82.7 21 814 29 81.9
logi 06 6 748 14 82.5 22 7161 30 T77.1
log. 7 78 15 82.5 23 763 31 7171
logio 8 748 16 82.5 24 760 32 T7.1

Table 2.4: L, and L, K-NN (K = 10) test set performance with intrinsic normaliza-
tion. The vowel space scales are specified in Table 2.3.
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Figure 2-3: Comparison between fuzzy ARTMAP and K-NN for intrinsic normal-
ization methods. Normalization identification numbers are in Tables 2.3 and 2.4.
Methods 26 and 27 (B and Be, Diff All) have the best performance.
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Vowel Space (77, Y] [F7.F7, FV, FY]  Dift Subset Dift All
Scale Id %(Fg) Id %(Fp) 4 %(F) Id % (Fp)

N 1 662 (134.3) 9 79.8 (56.2) 17 77.4 (65.8) 25 79.1 (62.9)
B 2 78.7(80.5) 10 81.2 (43.3) 18 81.4 (56.3) 26 83.1 (43.9)
Be 3 78.6(80.7) 11 821 (44.7) 19 80.8 (54.8) 27 83.1 (43.4)
M 4 77.1(82.3) 12 78.5(46.3) 20 77.5(61.9) 28 80.5 (51.9)
ERB 5 79.6(73.9) 13 80.9 (45.7) 21 77.5 (64.4) 29 79.6 (49.3)
logios 6 80.9 (66.6) 14 81.3(49.1) 22 75.7 (64.9) 30 77.6 (50.1)
log. 7 809 (65.8) 15 81.3 (49.1) 23 75.7(64.9) 31 77.6 (50.1)
logio 8 80.9(66.5) 16 81.3 (49.1) 24 75.7 (64.7) 32 77.6 (50.0)

Table 2.5: Fuzzy ARTMAP test set performance with centroid subtraction across all
frequencies (CS) extrinsic normalization.

The results for the centroid subtraction across all frequency (CS) extrinsic method
using fuzzy ARTMAP and K-NN are shown in Tables 2.5 and 2.6, respectively,
and summarized graphically in Figure 2.4. For the CS method, the log measures
perform better for the [F{', Fj] case; but otherwise, the psychophysical measures
again perform better. The best performance for fuzzy ARTMAP was achieved using
bark Diff All (83.1%); and ERB [F{/, F{', Fy, F§] for the L, (87.3%) and L, (86.9%)
K-NN.

The results for the CSi extrinsic method using fuzzy ARTMAP and K-NN are
shown in Tables 2.7 and 2.8, respectively, and in Figure 2-5. Here ARTMAP and
K-NN disagree as to which intrinsic method is best. Fuzzy ARTMAP performs
optimally for bark with end correction Diff All (88.1%); and the K-NN methods
perform optimally for the log [F§, F{', F}, F§] intrinsic method (90.6% for L; and
90.9% for L,).

The results for the LS extrinsic method using fuzzy ARTMAP and K-NN are
shown in Tables 2.9 and 2.10, respectively, and summarized in Figure 2.6. For LS
normalization, the bark Diff All method was nearly the best for both fuzzy ARTMAP
(84.8%) and the K-NN (88.8%), although the best performance for L; K-NN was
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Vowel Space [}, Fy]  Fg, I, Fu,Fy]  Diff Subset Diff Al
Scale - Id % Correct Id % Correct Id % Correct Id % Correct
L; K-NN
N 1 71.7 9 77.9 17 79.6 25 76.9
B 2 83.8 10 86.1 18 83.7 26 85.5
Be 3 83.8 11 86.3 19 84.1 27 85.4
M 4 84.7 12 86.0 20 82.1 28 82.7
ERB 5 85.4 13 87.3 21 81.2 29 82.7
l0g1.06 6 86.1 14 85.3 22 81.0 30 81.8
log. 7 86.1 15 85.3 23 81.0 31 81.8
logho 8 86.1 16 85.4 24 80.9 32 81.8
L, K-NN
N 1 73.3 9 77.3 17 78.6 25 75.5
B 2 84.2 10 86.3 18 84.5 26 85.5
Be 3 84.2 11 86.3 19 84.0 27 85.8
M 4 84.5 12 86.0 20 82.8 28 83.0
ERB 5 85.3 13 86.9 21 82.0 29 83.3
logi .06 6 86.3 14 85.8 22 80.3 30 81.3
log. 7 86.3 15 85.8 23 80.3 31 81.3
logyo 8 86.3 16 85.8 24 80.3 32 81.3

Table 2.6: L, and L2 K-NN test set performance with centroid subtraction across all
frequencies (CS) extrinsic normalization.

Vowel Space [FP FY] [FU,Fr, FP.F']  Diff Subset Diff All
Scale Id %(F8) Id % (F) 1d %(F) I1d % (F)
N T 8L.1(68.1) 9 83.5(37.1) 17 83.4 (40.9) 25 84.5(35.3)
B 2 845 (53.9) 10 86.1 (33.9) 18 87.0(37.5) 26 87.6(28.2)
Be 3 84.5(53.5) 11 86.2(35.1) 19 86.4 (40.5) 27 88.1(29.1)
M 4 84.8(586) 12 86.1(33.1) 20 86.9 (34.7) 28 87.7 (28.3)
ERB 5 85.3(55.5) 13 86.4 (31.9) 21 86.3(35.0) 29 87.4 (27.5)
logios 6 86.0 (55.2) 14 86.5(32.8) 22 85.2 (37.8) 30 86.7 (29.0)
loge 7 86.0 (55.5) 15 86.5(32.8) 23 85.1(37.8) 31 86.8 (28.9)
logio 8 859 (55.2) 16 86.5(32.9) 24 85.0 (37.8) 32 86.7 (29.0)

Table 2.7: Fuzzy ARTMAP test set performance with centroid subtraction for each
frequency (CSi) extrinsic normalization.
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Figure 2-4: Comparison between fuzzy ARTMAP and K-NN for the centroid sub-
traction across all frequencies (CS) extrinsic normalization method (Tables 2.5 and
2.6). Fuzzy ARTMAP performed best with methods 26 and 27 (B and Be, Diff All),
while K-NN performed best with method 13 (ERB, [Fy, FY', FY, F}]).
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Vowel Space [FY, FY] (Fg, Fy,Fy,F}]  Diff Subset Diff All
Scale Id % Correct Id % Correct Id % Correct Id % Correct
L; K-NN
N 1 83.1 9 83.8 17 84.5 25 83.3
B 2 87.4 10 89.3 18 88.4 26 88.6
Be 3 87.3 11 88.8 19 88.0 27 88.6
M 4 87.2 12 89.7 20 89.7 28 89.3
ERB 5 88.5 13 90.0 21 90.5 29 90.0
log1 .06 6 88.6 14 90.6 22 90.0 30 89.2
log. 7 88.6 15 90.6 23 90.0 31 89.2
logio 8 88.5 16 90.6 24 90.0 32 89.2
L, K-NN
N 1 83.4 9 83.0 17 84.3 25 83.0
B 2 86.9 10 88.8 18 88.1 26 88.8
Be 3 86.9 11 89.1 19 87.9 27 88.3
M 4 87.3 12 89.3 20 89.4 28 89.5
ERB 5 88.8 13 90.0 21 89.6 29 89.9
log1.06 6 88.5 14 90.9 22 89.7 30 89.4
log. 7 88.5 15 90.9 23 89.7 31 89.4
logio 8 88.5 16 90.9 24 89.7 32 89.4

Table 2.8: L, and L, K-NN test set performance with centroid subtraction for each
frequency (CSi) extrinsic normalization.



26

95 ,

3
g8
=)
S
3
g
&j 75 b _ e e s e e e e e e
70
fuzzy ARTMAP, —o—
K-NNL1 -+--
K-NNL2 -a---
65
0 5 10 15 20 25 30 35

CSi exlrinsic normalization method

Figure 2.5: Comparison between fuzzy ARTMAP and K-NN for the centroid sub-
traction for each frequency (CSi) extrinsic normalization method (Tables 2.7 and
2.8). Fuzzy ARTMAP performed best with method 26 (B, Diff All), and K-NN
performed best with methods 14 through 16 (log./log.06/l0g10, [FY, FY', Fy', FY)).
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“Vowel Space  [F}, FY]  [Fu, FY,Fy, FY]  Dift Subset Diff All

Scale Id %(F) 14 %(F5) Id %(F) Id % (Fp)
N 1 79.1(826) 9 81.5(52.3) 17 84.0 (49.6) 25 83.0 (35.4)
B 2 77.7(86.1) 10 81.7(50.1) 18 84.4 (46.9) 26 84.8 (30.1)
Be 3 77.6(86.1) 11 81.4(54.3) 19 84.0 (50.6) 27 84.8 (31.5)
M 4 78.2(86.7) 12 81.9(50.7) 20 83.7(49.0) 28 84.4 (31.7)
ERB 5 77.5(87.8) 13 81.7(51.9) 21 829 (51.0) 29 84.9 (32.1)
logios 6 76.5(92.3) 14 81.7(51.6) 22 820 (54.3) 30 82.7 (35.7)
log. 7 76.5(92.3) 15 81.7(51.6) 23 82.0 (54.3) 31 82.7 (35.7)
logio 8 76.5(92.3) 16 81.7(51.6) 24 820 (54.3) 32 82.7 (35.7)

Table 2.9: Fuzzy ARTMAP test set performance with linear scale (LS) extrinsic
normalization.

ERB Diff All (89.0%), and bark Diff Subset (89.0%) for L, K-NN. Also, the psy-
chophysical measures perform slightly better than the log measures.

The results for the LT extrinsic method using fuzzy ARTMAP and K-NN are
shown in Tables 2.11 and 2.12, respectively, and in Figure 2-7. Comparing Fig-
ure 2.7 with Figures 2-4-2.6, the other extrinsic methods, shows that LT extrinsic
normalization has the best performance. Once again, the psychophysical measures
perform slightly better than the log measures. However, fuzzy ARTMAP and the
K-NN disagree on which psychophysical measure is best. For fuzzy ARTMAP, the
bark Diff All method achieves 92.2%. For the K-NN algorithms, the [F{, FY, F}/, F¥
methods perform best, with L; K-NN achieving 94.3% with the mel scale, and L,
K-NN achieving 94.6% with the ERB scale.

2.7 Discussion

2.7.1 Fuzzy ARTMAP vs. K-NN

While having similar tendencies, the K-NN algorithms tended to outperform fuzzy
ARTMAP. However, the improved performance achieved by K-NN comes at a cost of

storing all 480 training points. Fuzzy ARTMAP coded between 22 and 135 F} nodes,
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Vowel Space  [FV, F?]  (Fu, I, Fy, FZ]  Diff Subset Diff All
Scale Id % Correct Id % Correct Id % Correct Id % Correct
L1 K-NN
N 1 82.8 9 83.8 17 87.7 25 86.5
B 2 81.9 10 85.8 18 88.1 26 88.8
Be 3 82.0 11 84.3 19 88.1 27 88.3
M 4 82.4 12 84.8 20 87.9 28 88.5
ERB 5 82.1 13 85.2 21 88.4 29 89.0
logy.06 6 81.8 14 84.4 22 87.5 30 87.7
log. 7 81.8 15 84.4 23 87.5 31 87.7
logio 8 81.8 16 84.4 24 87.5 32 87.7
L, K-NN
N 1 82.7 9 81.3 17 88.4 25 86.3
B 2 82.1 10 83.8 18 89.0 26 88.8
Be 3 82.0 11 824 19 87.8 27 88.0
M 4 81.5 12 83.8 20 88.8 28 88.2
ERB 5 82.3 13 83.1 21 88.2 29 87.9
logy.06 6 81.5 14  83.1 22 878 30  87.0
log. 7 81.5 15 83.1 23 87.8 31 87.0
logio 8 81.5 16 83.1 24 87.8 32 87.0

Table 2.10: L,
normalization.

and L K-NN test set performance with linear scale (LS) extrinsic

Vowel Space (7, FY] [Fo F/ F/ Ff]  DIiff Subset Diff All
Scale Id % (F) Id %(F,) Id  %(F) 1d %(Fp)
N T 89.5(41.7) 9 894 (20.1) 17 90.7 (29.5) 25 90.9 (23.9)
B 2 88.7(44.2) 10 91.0 (26.1) 18 91.2(27.9) 26 92.2 (22.0)
Be 3 88.7(43.8) 11 90.4 (27.3) 19 90.8 (28.8) 27 91.6 (22.5)
M 4 889 (42.7) 12 89.4 (26.1) 20 91.2(28.7) 28 91.8(26.1)
ERB 5 88.6(42.3) 13 90.3(25.5) 21 90.5(29.0) 29 91.6 (22.5)
log1 .06 6 86.2(54.9) 14 885 (27.8) 22 88.4 (33.1) 30 89.7(28.2)
log. 7 88.2(49.1) 15 87.8(33.9) 23 88.9(31.3) 31 90.7 (25.2)
logio 8 87.2(57.8) 16 82.6 (42.5) 24 88.5(33.5) 32 90.3 (25.1)

Table 2.11: Fuzzy ARTMAP test set performance with linear transformation (LT)
extrinsic normalization.
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Figure 2.6: Comparison between fuzzy ARTMAP and K-NN for the linear scale (LS)
extrinsic normalization method (Table 2.9 and 2.10). Fuzzy ARTMAP, L, K-NN,
and Ly K-NN performed best with methods 26 and 27 (B and Be, Diff All), method
29 (ERB, Diff All), and method 18 (B, Diff Subset), respectively.
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Vowel Space [FY, Fy) [Fg, FY', Fy,FY]  Diff Subset Diff All
Scale Id % Correct Id % Correct Id % Correct Id % Correct
Ly K-NN
N 1 92.0 9 914 17 92.0 25 92.2
B 2 91.5 10 94.0 18 93.0 26 93.5
Be 3 91.6 11 93.7 19 93.1 27 93.3
M 4 92.6 12 94.3 20 93.4 28 92.7
ERB 5 91.0 13 94.2 21 93.3 29 93.0
logi.06 6 88.4 14 93.3 22 92.1 30 924
log. 7 90.7 15 92.1 23 92.6 31 93.1
logio 8 89.5 16 87.1 24 924 32 92.7
L, K-NN
N 1 91.7 9 90.1 17 92.2 25 92.1
b 2 91.7 10 94.1 18 93.1 26 93.7
Be 3 91.8 11 94.0 19 92.8 27 93.3
M 4 92.0 12 94.2 20 93.6 28 92.6
ERB 5 91.0 13 94.6 21 93.1 29 93.4
ilog1.06 6 88.5 14 934 22 91.7 30 92.4
log. 7 91.0 15 91.6 23 92.8 31 92.9
logio 8 89.5 16 88.3 24 92.0 32 92.9

Table 2.12: L; and Ly K-NN test set performance with linear transformation (LT)
extrinsic normalization.
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Figure 2.7: Comparison between fuzzy ARTMAP and K-NN for the linear trans-
formation (LT) extrinsic normalization method (Tables 2.11 and 2.12). Fuzzy
ARTMAP, L; K-NN, and L, K-NN performed best with methods 26 (B, Diff All),
method 12 (M, [Fy, FY', Fy, F{]), and method 13 (ERB, [F§, F{', F}, F¥]), respec-
tively.
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which provides a compression of 3.5 to 21.8 compared to the storage requirements
of K-NN. Similar savings are achieved in computation time during performance.
These differences in storage and computation can be a major factor in large-scale

applications.

2.7.2 Differences between vowel space scales

The results from both the intrinsic and most extrinsic methods show that both
psychophysical (B, Be, M, ERB) and log transformations are better than none (N).
There was little difference between Bark (B) and bark with end correction (Be).
Similarly, the three log measures show no major differences among themselves, except
in the LT extrinsic method, where the natural log measure performs better for all
except [Fg', F{', F§, F}], where the semitone scale performs better. The performance
of fuzzy ARTMAP, for the intrinsic and all the extrinsic methods, was optimal for
either bark or bark with end correction, with Diff All. While the K-NN algorithms
varied more, these methods chose the psychophysical measures for all but the CSi
method. Thus, on the whole, the psychophysical measures provide better speaker-

independent representation than log measures.

2.7.3 Intrinsic methods

For intrinsic methods, bark differences are usually the best speaker normalization
method with the best performance achieved by bark Diff All, with 83.1% for ARTMAP
and 85.5% for L, K-NN; and bark with end correction Diff All with 85.8% for L,
K-NN.

The performance for log measures using ratios was about 5% less than the per-
formance using [F§, F{, F3, F3). Thus, speaker normalization methods using logs of

formant ratios seems to be a poorer invariant representation than the simpler method
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of converting the frequencies to a log scale.

2.7.4 Extrinsic methods

Among the extrinsic normalization schemes, the LT method performs best, followed
by CSi, LS, and CS. The LT method works best using either the bark Diff All method
or ERB/mel transformed [F§, F{', F}, F§]. The second best extrinsic method is the
CSi method‘using either bark with end-correction Diff All or log [F{, FY, F}, F}).
The LS method with bark Diff All/ERB Diff Subset proved the next best, followed
by the CS method with either bark Diff All or ERB [F{/, FY', FY, F}).

While LT performs best it requires the most a priori knowledge, namely labeled
training set data points. As a model of human vowel perception, the LT method
seems unlikely since the listener would have to identify a speaker’s vowels ahead of
time in order to create the transformation matrix, which is needed to identify the
vowels. However, for a machine recognition application, wherein a speaker can state
a specified utterance allowing the machine to create the transformation matrix, the
LT method seems feasible. On the other hand, the CSi method, which has the same
complexity as CS or LS, performs almost as well and does not require the identity

of vowels for the speaker adaptation.

2.8 Summary

This research has developed a method for comparing a large number of normalization
methods in a speaker independent fashion that is fast and systematic, and that is
readily applicable to other areas. In addition, one sees that both fuzzy ARTMAP
and K-NN had similar trends with K-NN performing better but requiring ten times
as much memory. In comparing psychophysical and log measures, one generally sees

that the psychophysical measures outperform the log measures: K-NN performed
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best using psychophysical scales for most normalization methods; fuzzy ARTMAP
performed optimally using bark scale, a psychophysical measure, with all possible
differences (Diff All), for all the normalization methods. Thus, bark scale using Diff

All seems best for creating a more canonical representation for easier classification.



Chapter 3

A psychophysical study of adaptation to silent

intervals during variable-rate speech

3.1 Introduction

Researchers in speech perception have been searching for cues in the speech signal
that invariantly identify linguistic units; e.g. phonemes. These invariant cues specify
the phoneme across contexts, speaking rates, and speakers. However, this search
has not been fruitful, and instead it has led to the finding that there are many
perceptually relevant cues that influence the identification of phonemes, and that
these cues can vary with context, rate, and can trade against each other.

Some of the acoustic cues that listeners employ to distinguish phonemes include
formant frequency transitions at the onset and offset of voiced portions (Liberman,
Delattre, & Gerstman, 1954; Sharf & Ohde, 1984), duration of voiced portions ?
(Ainsworth, 1972; Just, Suslick, Michaels, & Shockey, 1978; Miller & Baer, 1983),
duration of noise spectra (Repp, Lieberman, Eccardt, & Pesetsky, 1978), and du-
ration of closure intervals (Dorman & Raphael, 1980). Formant frequencies are
frequencies in the speech signal where there is greater energy; and closure interval
is the time period during which a closure in the vocal tract is produced, and as a
consequence there is a silent interval (but usually, there is also very low frequency

energy present). For example, Figure 3-1 shows a spectrogram of the intervocalic

1The voiced portion corresponds to the voiced formant transitions and the adjacent vowel.

35
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Figure 3-1: Spectrogram of intervocalic stop consonant /ada/ uttered by a male
speaker.

stop /ada/. In the figure, the formant frequencies are shown as the darker horizon-
tal lines, with the closure interval occurring between 0.48 and 0.69 seconds. The
voiced portion before the closure interval is referred to as the vowel-consonant (VC)

transition, and the portion after the closure is the consonant-vowel (CV) transition.

3.1.1 Cue adaptation

These different types of durations are used as cues for phonetic identification and also
for detecting word boundaries in speech (Repp et al., 1978; Repp, 1980; Cutler &
Butterfield, 1990). Since these duration cues vary as a function of speaking rate and
stress (Gay, 1978; Repp et al., 1978; Port, 1979; Tartter, Kat, Samuel, & Repp, 1983),
the distribution of these intervals can influence how speech sounds are categorized
for purposes of recognition. Thus, the listener has to adapt to the distribution
and compensate for rate effects. Repp (1980) investigated a listener’s ability to
adapt to silent intervals in stop consonant clusters.Stop consonant clusters are speech
segments consisting of two adjacent stop consonants, e.g. /ad-ga/. Repp found that
by skewing the distribution of silent intervals in the experiment, the psychometric

curve for hearing only one or both stop consonants shifted close to the mean of the
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Figure 3-2: Schematic representation of the /ib-ga/ cluster token from Repp (1980).

skewed distribution, as well as altering its slope.

3.1.2 Repp (1980) experiment

Repp (1980) varied the silence duration between two stop consonants in a synthetic
/VCi — C2V/ syllable, and had subjects state whether they heard one or two stop
consonants. The experiment consisted of two cases: the cluster case had formant
transitions corresponding to 2 different stops, Cy # C2; and the geminate case had
transitions corresponding to the same stop, C; = C,. For both the cluster and
geminate case, the VC; was /ib/. The C;V was /ga/ for the cluster condition and
/ba/ for the geminate condition. Figure 3-2 shows a schematic representation of
a cluster token. In the cluster case, the subject circled “bg” if they heard both
stop consonants, or they circled “g” if they heard only one stop consonant. In the
geminate case the subject responded similarly by circling “bb” if they heard two stop
consonants, or “b” if they heard only one stop consonant.

Each case had three conditions: no anchor, low anchor, and high anchor condition.
These conditions correspond to how the silence durations were distributed over the

condition. The distributions for the cluster case is shown in Figure 3-3. In the



38

no anchor condition there were 9 tokens of 11 silence durations, and thus, an equal
distribution. In the low anchor condition, there were 30 tokens of the shortest silence
duration (15ms), and 10 tokens each of the next 7 silence durations. Thus, the low
anchor condition had a skewed distribution with more shorter silence durations than
longer durations. The high anchor case is the opposite of the low anchor condition,
with 30 tokens of the longest silence duration (115ms), and 10 tokens each of the
previous 7 silence durations.

By presenting these different distributions, Repp found that the psychometric
curve for hearing one versus two stops shifted and changed its slope as a function of
the range of silence intervals and the number of tokens of each silent interval. Figure
3.4 shows the results that Repp obtained by averaging the results of the identification
curves over 8 subjects. Note that the slope of the curve was more shallow for the
no anchor case than for either the anchored cases. Since Repp pooled the response
across subjects, the resulting shift and slope change in the curves could be due to
averaging.

This paper replicates and extends the Repp (1980) cluster experiment to deter-
mine if the shift and slope changes in the response curves are due to pooling across
subjects, and what the underlying mechanism is in silent interval adaptation. The
first experiment replicates the cluster condition of Repp (1980), and finds that the
individual subject data, while quite varied across subjects, show the curve shift as a
function of the silence distribution. In addition, the pooled data shows a slope change
for the no anchor condition. The second experiment extends the first experiment by
performing the experiment with a different stop consonant cluster, /ad-ga/, showing
the shifts in the curves are valid, with no apparent slope change, and having less vari-
ability across subjects. The third and fourth experiments investigate the adaptation

mechanism. The third experiment investigates the influence of the overall variance
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of the silence duration, and finds that there is no significant influence of variance
on the adaptation process. Since the third experiment suggests that variance does
not have an effect, the listeners’ response must be based on the mean of the silent
interval, within some time window. So, the final experiment tests the time interval

in which the adaptation takes place.

3.2 Experiment 1: Replication of Repp (1980) cluster con-
dition

In trying to replicate the results of Repp (1980) there were some difficulties during

the pilot studies. Using synthetic speech tokens proved to be difficult since good

exemplars of the CV /ib/ could not be created, and therefore, natural speech tokens

were used. Thus, this experiment replicated the cluster condition of Repp (1980)

using natural speech stimuli, in which the tokens were edited to closely approximate

the Repp (1980) synthetic tokens.

3.2.1 Subjects

Six subjects participated in this experiment, including four graduate student vol-
unteers, the author, and his advisor. An additional subject participated but was
removed from the analysis due to his poor responses: he had no boundary between
1 and 2 stop consonants for the different anchor conditions. In addition, one student
had knowledge of the Repp (1980) experiment, while the other students were naive

subjects.

3.2.2 Stimuli

In order to get the VC and CV tokens, a male speaker uttered the syllable /ib-ga/

into a Sennheiser MD 421 microphone in a quiet room. The utterance was sampled
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at 16 kHz using the Ariel dsp32c DSP board and stored on a Sun Sparcstation IPX.
These tokens were cut into a VC (/ib/) and a CV (/ga/) token, removing the burst
information and leaving only the voiced formant transition information. Thus, they
resembled the synthetic stimuli in Repp (1980). In order to obtain only the voiced
portions of the tokens, the signal was cut at the nearest zero crossing based on
the time waveform and a spectrogram 2. Listening tests of the CV and VC tokens
verified that they were good tokens. Once the CV and VC tokens were obtained,
the 11 different silent intervals were created at a sampling rate of 16 kHz. The 11
intervals ranged from 15 to 115ms in 10ms steps. Next the VC-silence duration-
CV cluster tokens were created by appending the VC token, an appropriate silence
duration, and the CV token.

All of the stimuli for each of the anchor conditions was saved in a separate file on
the Sun Sparcstation. At the beginning of each condition, there were 20 examples of
the cluster tokens, taken from the extremes of the silent intervals for that particular
condition, presented in alternation. Following these examples, there was a 10 second
gap, followed by the actual experiment. The actual experiment consisted of 99 tokens
for the no anchor condition, and 100 tokens for the anchored conditions (Figure 3-3),
with a 2.5 second inter-token interval. For the no anchor condition, there were 9
tokens of each of the 11 silence intervals. In the low anchor condition, there were
30 tokens of the 15ms silence duration, and 10 tokens each of the 25 to 85ms silence
durations. The high anchor condition had 30 tokens of the 115ms silence duration,
and 10 tokens each of the 45 to 105ms silence durations. The mean and standard
deviation of the silent interval distributions were 43ms and 24.94ms for the low
anchor, 65ms and 31.78ms for the no anchor, and 87ms and 24.94ms for the high

anchor condition. The order of the tokens were randomized for each condition.

2The Entropic Research Laboratory’s ESPS software package was used for manipulating the
speech tokens.
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3.2.3 Procedure

The subjects were presented with six tokens to familiarize the subjects with the
tokens and to determine a comfortable listening level. The six tokens consisted
of alternating tokens taken from the extremes of the closure durations (15ms and
115ms). The experiment consisted of one session with a break between each of the
three conditions. Subjects were seated in a quiet room, and listened to the stimuli
over AKG K130 headphones at a comfortable level. The subjects were prompted by
the computer to initiate each of the anchor conditions, only being allowed to stop
at a break. The presentation order of the anchor conditions was balanced across
the six subjects. The subjects responded by circling “g” or “bg” on the response
sheet corresponding to the number of stop consonants they heard. The subjects were
also told that they should not expect equal number of responses between the two

alternatives “bg” and “g” for the different conditions.

3.2.4 Results and discussion

The results for the six subjects are shown in Figure 3.5, and the pooled results are
shown in Figure 3-6. The figures show the average number of stop consonants heard
as a function of the distribution. Thus, hearing one stop corresponds to hearing only
“g”, whereas hearing two stops corresponds to hearing “bg.” Figure 3-5 shows that
the individual subject data is quite variable and “noisy” across subjects. However,
the pooled results is less variable, and shows a pronounced shift for the three con-
ditions. The 50 % point of the pooled responses are close to the means of the three
anchor conditions. Statistical analysis using ANOVA shows that the three curves
corresponding to the different anchor conditions are significant (p < 0.0001), and
the silent interval values were significant (p < 0.0001). The slope for the no an-

chor condition in the pooled results is more shallow than the low and high anchor
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conditions.

The results from this experiment reinforce the results of Repp (1980) showing
that the psychometric curves shift based on the distribution of the silent intervals,
i.e. the range and frequency (number of tokens) of the tokens. In addition, the slope
change in Repp (1980) is replicated in these results for the no anchor condition across
subjects. However, due to the variability of the psychometric curves across subjects,
the slope change could be due to pooling across subjects, and not due to any true
adaptation process. In other words, since each individual’s psychometric curve for
the no anchor condition have drastically different means, by averaging across the
listeners, the pooled response curve becomes more shallow.

While these results support the results of Repp (1980), five out of the six subjects
reported hearing /id-ga/ or /ida/ for quite a few tokens. This could be due to inter-
action between the VC and the silent interval, i.e. there could be cue trading issues
between the initial formant transition and the silent interval. Another possibility
is that this percept could be due to an alveolar flap percept 3 promoted by a very
short closure duration. Dorman and Raphael (1980) showed that listeners perceive a
stop consonant, whose formant transition correspond to /b/ or /g/, as /d/ for very
small closure durations. In addition, the final formant frequencies for /b/ are not
good cues in front vowel context (/i/). Due to the /d/ percepts and the questionable
nature of the slope change, the second experiment replicated this experiment using
the stop consonant /d/ in a back vowel context (/a/), which has better formant

transition cues.

3An alveolar flap corresponds to the production of the stops /t/ or /d/ in which the tongue
rapidly and very briefly produces a closure.
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3.3 Experiment 2: Different place of articulation

This experiment tested the response of listeners in identifying the number of stops
with a different VC, /ad/. Thus, this experiment used /ad-ga/ instead of /ib-ga/

tokens.

3.3.1 Subjects

The six subjects that participated in the first experiment took part in this experiment

as well.

3.3.2 Stimuli

The stimuli were created in the same manner as experiment 1, except the original
utterance was /adga/. The same male speaker uttered the syllable /adga/, which
was broken up into burstless VC (/ad/) and a CV (/ga/) token. Using these VC and
CV tokens, the exact method of obtaining the three files stated in experiment 1 was
followed. The same randomization procedure was followed, and so the order of the

tokens remained the same as in experiment 1.

3.3.3 Procedure

The procedure for this experiment was the same as experiment 1 except that the
subjects responded by circling “d” or “dg” on the response sheet. Once again, the

order of the conditions were randomized across subjects.

3.3.4 Results and discussion

The results for all six subjects are shown in Figure 3.7, and the pooled responses
are shown in Figure 3.8, respectively. The individual subject data is less variable

compared to the individual subject data from Experiment 1 (Figure 3-5). In addition,
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the individuals show shifts of the psychometric curves. The subjects found this
experiment much easier to perform than the previous experiment, which is reflected
in the subjects’ performance. Once again, the pooled result shows a shift in the curves
for the three different conditions, with the 50% points being close to the means. The
analysis of variance shows that the three anchor conditions are significantly different
(p < 0.0001), as well as the durations themselves (p < 0.0001).

The pooled results do not show any apparent slope change across the three con-
ditions, implying that the slope change seen in Repp (1980) and in Experiment 1 are
probably due to poor formant transition cues specifying /b/, or due to the distrac-
tions from flap percepts, or due to pooling across subjects.

Since Experiment 1 and 2 differed only in the initial VC, ANOVA tests were
performed across experiments for each of the different anchor conditions to see if
cue trading exists. The results from ANOVA show that the no and high anchor
conditions differed significantly between Experiment 1 and 2 (p < .04), but the low
anchor condition was not significantly different (p < .33). Thus, the result seems to
implicate some cue trading; however, in light of the individual variability and the
flap percepts in Experiment 1, the significance of the differences between Experiment
1 and 2 is questionable and needs further exploration.

Given that the listener is adapting to these different distributions, the listener
could normalize the silent interval distribution based on the mean and/or variance.
Therefore, the next experiment tests whether the variance of the overall distribution
has any influence. Also, since the /ad/ token was much easier to perceive than the

/ib/ token, it was decided to use the /ad-ga/ tokens for the rest of the experiments.



PR

49

Raprimat 3: fpesher Spetunt 1: gk 2

Avg. mumber of stape

Avy. cnmber of sops
E L g8 B B¢ ¢

" "
8 ) » L k] [ kid [ ” ws ns
el latorvals (uwec)
if
vr Low mdher o 4
Nemcher +— ./

1k N mde o~ ! S

wl
bl ¢
v ¥
P !

ut -
H £

wl

12

ul

1 1 4
8 " 1 (14 1 n £ (] " [ ] 18
Slead tal ervals (xmer)
Lprimmi L Speker 6

i [ k] ] L] (L] s ) 18 B “$ L] “ k(]
Wient intervals (msec) Sl ladorvals (msec)

Figure 3.7: Results for experiment 2 for the six subjects for the three anchor condi-
tions. The figures show the average number of stop consonants heard for each silent

interval.



50

Experiment 2: Pooled response
| L] ¥ 1 ) T 1 4 | T
N S S ]
apmme AR SR
19 | Low anchor —o— ,,—"" [ -
No anchor -+~ )
High anchor -8-- { e
18 / -
: g
;
£ ; ’
3 $
(- ',‘ ]
g
< :
8 .
1 1 L L 1 ] 1 L [
15 25 35 45 55 65 75 85 95 105 115
Silent intervals (msec)

Figure 3-8: Results from experiment 2 pooled across the subjects for the three con-

ditions.



51

3.4 Experiment 3: Effects of silent interval distribution

variance

This experiment examines the effects of the overall variance of the silent interval
distribution. In order to test this, three different silent interval distributions were
chosen. The distributions kept the mean the same as the no anchor condition in
experiment 2 (65ms), but varied the overall variance of the distribution. The first
condition is a replication of the no anchor condition from experiment 2, denoted here
as the normal range condition. The small range condition consists of the normal range
condition with only the center 9 intervals, and thus, a smaller variance (25.95ms)
than the normal range condition (31.78ms). The U anchor condition has a larger
variance (36.70ms) than the normal range condition. This is accomplished by having
more tokens of the smallest and largest intervals than the other intervals. The
distributions are shown in Figure 3-9. A chi-square test was performed. It verified

that the three distributions do significantly differ (p < .025).

3.4.1 Subjects

The six subjects that participated in the first and second experiment took part in

this experiment as well.

3.4.2 Stimuli

The stimuli that was used consisted of the same /ad/ and /ga/ tokens as in Experi-
ment 2. However, the distributions of the silent intervals were changed (Figure 3-9).
There were three different conditions: no anchor or normal range, small range, and U
anchor. The normal range condition consisted of the same silent interval distribution
from the no anchor condition from the second experiment. In the small range condi-

tion, the range of the silent intervals went from 25 to 105ms with 11 tokens of each
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stimuli. In the U anchor condition, the smallest (15ms) and largest (115ms) silent
interval had 18 tokens each, with the 7 tokens each for the intervals 25 to 105ms. So,
all three conditions had 99 tokens. With these distributions, the cluster tokens and
three files, corresponding to the three conditions, were created in the same manner

as the no anchor condition in experiment 2. The tokens were once again randomized.

3.4.3 Procedure

The experiment consisted of one session with two breaks between the three condi-
tions. Once again, the order of the anchor conditions was balanced across all the

subjects. Other than this, the procedure was the same as in experiment 2.

3.4.4 Results and discussion

The results for each subject is shown in Figure 3-10, and the pooled results are
shown in Figure 3-11. For most of the subjects, the curves corresponding to the three
conditions are quite similar, and there is little variability across subjects. In fact,
variance analysis found that the three different conditions did not differ significantly
(p < 0.4203). The pooled results are similar in that there is little difference across
the three conditions.

Thus, the results suggest that the effect of overall variance is insignificant, and
that the listener must be using only the mean to adapt to the silent interval. The
fourth experiment manipulated the temporal distribution of the silence intervals to
gain insight into the “window” over which the listeners compute the average silence

duration.
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3.5 Experiment 4: Temporal characteristics of adaptation

Since the previous experiments suggest that listeners are adapting to the mean silent
interval, this experiment investigates the influence of the temporal token presentation
on the stop consonant cluster percept by testing the prior two tokens’ influence on the
percept of the current token. Listeners are presented with M trials, where each trial
contains 4 different tokens of /ad-ga/: P, P’, T, and T". P and P’ are the two prior

tokens, and {

P4re used to deter

correspond t
19 | Norm:l: range ——
range —+-
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There are}a total of six conditions, corresponding
17}

P’ §re choser | such that they maintain a constant fiean of 65ms, e.g. 15 and 11pms,

I
3

i

Ha

b the different values of the test token T, w ,' :

éd'the choice of P and P’. B and

whg:h corre;ponds to the mean of the no anchor conditions from Experimenty 1-3.

Smi'xlarly, ;I; is chosen to be the complement q 'T, such that T and T’ maintgin a

mean of 69gls. By maintaining the mean at 86ms across P and P’ and T angd T,
%

any effect $hat is obtained across the con(j}{i s should be a result of the sequential

nature of yhe.adaptation.

1 - =

1 (] 1 1 1 I -t

1 1
3.5.1 Subjecltsss 35 45 ss e 75 8 95 105 1S
Silent intervals (msec)

Five of the six subjects that participated in Experiments 1, 2, and 3 took part in
Figure 3-11: Results from experiment 3 pooled across the subjects for the three

tBisdsrpaEiment.

3.5.2 Stimuli

The stimuli consisted of a subset of the stop consonant cluster tokens (/ad-ga/) that
were used in experiments 2 and 3. The /ad-ga/ tokens consisted of six cluster tokens
with the following silence duration: 15ms, 35ms, 55ms, 75ms, 95ms, 115ms.

There were six conditions corresponding to the different P and P’ presentations:
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15 and 115ms, 35 and 95ms, 55 and 75ms, 75 and 55ms, 95 and 35ms, and 115
and 15ms. Each condition contained a total of 30 trials. Each trial consisted of
four tokens: P, P, T, and T’, where P and P’ are set to the values dictated by the
particular condition. The 30 trials correspond to five repetitions of the six different
cluster test tokens, T. T’ is chosen to be the complement of T, such that T and T’
maintain the mean at 65ms. For example, if T is 35ms, then T’ is chosen to be 95ms.
The order of the test tokens T was randomized for each condition. All the tokens
for each condition was placed in a separate file on a Sun Sparcstation.

Since the inter-token interval and the inter-trial interval was 1 second, the subjects

had no knowledge that there were multiple trials in each condition.

3.5.3 Procedure

Each condition had six alternating examples from the extremes of the condition, fol-
lowed by a 10 second gap, followed by the actual condition. The experiment consisted
of one session with breaks between the six conditions. The order of presentation of
the different conditions were randomized across speakers. The subjects responded
by circling “d” or “dg” on the response sheet for every token. Thus, the subjects
were unaware of the differences between the tokens. Only the response for the test

token T was used in determining the psychometric curves.

3.5.4 Results and discussion

The results for each subject is shown in Figure 3-12, and the pooled results are shown
in Figure 3-13. For most of the subjects, the curves corresponding to the different
conditions are quite similar, but slightly different. The six conditions do differ sig-
nificantly (p < .02), and comparison of the different P-P’ pairs show significance.

15-115ms and 115-15ms (p < .04), 35-95ms and 95-35ms (p < .03), and 55-75ms and
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75-55ms (p < .04).

This experiment shows that there is a sequential component to the adaptation
process since the P-P’ pairs, e.g. 15-115ms and 115-15ms, are significantly different.
Since the mean was kept the same, the resulting differences have to be due to the
order of presentation. Furthermore, an interesting result that is seen across most
subjects and in the pooled response is the reversal of the curves for (P-P’) for 115-
15ms and 15-115ms. In other words, the psychometric curve for 115-15ms is to the
right of the 15-115ms curve, which is the opposite of what one expects if the previous
token has the most weight in determining the location of the psychometric curve.
This could be due to contrast effects or a smaller weighting to the prior token.

However, the experiment contains some possible problems. If the adaptation
window is not flat and is greater than three tokens, then there is the possibility of
interaction between prior trials and the current trial. Thus, this experiment needs

to be extended to determine the weighting and the window size.

3.6 Linear adaptation model

Based on the results of Repp (1980), Boardman, Cohen, and Grossberg (1993) created
a model which emulated the percept of the stop consonant clusters. In the model,
identification of the second stop consonant was based on an adaptation process that
found the mean silent interval. The model was able to replicate the psychometric
curves of Repp (1980), although the slope change in the no anchor condition was
not obtained. In order for the model to produce the slope change for the no anchor
condition a bias had to be introduced for each “subject.” Thus, the slope change is
obtained by averaging across these “subjects.” In other words, the model predicted
that the slope change was due to averaging across subjects, which was validated in

the results of these experiments.
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Figure 3-13: Results from experiment 4 pooled across the subjects for the different
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In order to study the adaptation process in more depth, a simple model of the
adaptation process was analyzed. This adaptation model was used to fit the psy-
chometric functions and then used to predict the subjects’ performance on other
conditions. Moreover, since it was determined from experiment 3 that listeners do
not use the variance of the distribution to adapt to the silent interval, the simplest
assumption is that the listener adapts to the mean silent interval within some time
window. 7

The model assumes that there is a decision boundary between hearing 1 and 2
stop consonants which shifts as a function of the prior silent intervals. The model
derives the mean silent interval within a specified time window. The window could
correspond to an exponential weighted average or a flat running average. After
the mean is found, the model subtracts this weighted average from the current silent
interval to derive a decision. Furthermore, it is assumed that there is white (gaussian)
noise, with a zero mean and unit standard deviation, which perturbs the judgement

process. The model is described as follows:

N(t) = H(S(t) - fj aiS(t — k) + €(t)) +1, (3.1)
k=1

where N(t) is the number of stops heard by the model at time t, S(¢) is the value
of the silent interval at time t, a; are weighting factors less than 1, M corresponds
to the window length, ¢(¢) is white noise corresponding to noise in the perception
process, 1 represents the fact that the second stop is always heard, and H(z) is a

function, denoting the all-or-none percept of the first stop consonant:
1 >0,
0 otherwise.

Equation 3.1 states if the current silent interval, S(t), is greater than both the
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mean silent interval, M a,S(t — k), and the spurious noise, ¢(t), then one hears
the first stop, and a total of 2 stops. However, if the current silent interval S(t) is
less than the mean and the noise, H(...) = 0, and so, only the second stop is heard.
The effect of the noise is to produce a 50% probability of hearing the first stop when
the current silent interval is at the mean silent interval.

The weighting is derived from a particular subject’s responses by using the per-
ceptron learning rule. The perceptron learning rule states that if the output of the
network equals the target value, then no change in the weights are made. However,
if there is an error, then a weight is changed in proportion to the error multiplied by
the input. During the training phase the noise ¢(t) is set to 0.

Since the first experiment proved to be more difficult for the subjects, that exper-
iment was not modeled. For experiment 2, the weights were obtained by training the
network using the no anchor condition. After training, the network’s performance
was determined on the no anchor condition as well as the novel tokens from the low
anchor and the high anchor conditions. This was done for experiment 3 as well: the
model was trained on the normal range condition, and then tested on the normal

range condition as well as the novel tokens from the U anchor and small range con-

~ditions. In deriving the training data, the subjects’ response for the first M tokens

were based on the example tokens, which alternated between the extremes of the

condition.

3.6.1 Window length and weighting

One method for gaining insight into the window length is to see how the error changes
as the window length M is varied. Figure 3-14 and 3-15 shows the resulting errors as
the window length is varied from 1 to 15 tokens for each subject for Experiment 2

and 3, respectively.
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For the most part in both Experiment 2 and 3, the errors tend to plateau after 7.
Thus, the implication is that the window size within which the listener adapts is less
than 6 tokens, and that more tokens from the past do not provide more information.
The weights ax are shown for a window length of 7 tokens in Figures 3-16 and 3-17 for
Experiments 2 and 3, respectively. The weights seem quite chaotic across subjects.
This could be due to the fact that the linear model has too many parameters a; which
dictate the result, and thus, more variability in the weights. A better model might

consist of an exponentially weighted average, in which there are fewer parameters.

3.7 General results and conclusion

The results from these experiments support the results of Repp (1980), which showed
that there are range and frequency (number of tokens) effects of silence duration in
stop consonant cluster perception. The first experiment showed that the psycho-
metric curves, corresponding to the number of stop consonants heard in an /ib-ga/
context, shifted and changed slope as a function of the silent interval distribution
shape. However, the individual subject data was quite “noisy” and variable, and
subjects heard /ida/ and /id-ga/ percepts for some of the tokens. These anamolies
are probably due to flap percepts and poor formant transition cues signifying /b/
due to the front vowel context.

The second experiment showed that the psychometric curves exist for a different
stop cluster /ad-ga/. In addition, the subject data is less variable, and no slope
change is evident, lending credence to the notion that the slope change in the first
experiment is due to averaging across noisy subject data.

The issue of cue trading between the formant transitions and the silent interval
needs further exploration. While a comparison between Experiment 1 and 2 showed

significant differences for two of the three conditions, the variable results of Experi-
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ment 1 confounds this issue. Thus, the issue of cue trading needs to studied further,
and verify if there is a true interaction between formant transition cues and silence
duration cues. | |

The third experiment supports the notion that while listeners are adapting to
the distribution of the silent intervals, they do not employ the variance in this adap-
tation process. The fourth experiment shows that the adaptation process contains
sequential effects, and that the window includes more items than just the prior to-
ken. While the results show there is some adaptation taking place, better data on
the sequential aspect of this process is needed.

The linear model of adaptation provided insight into the length of the window
by denoting when the error on the test tokens plateaued, which corresponded to 7
tokens. Since the modeling effort was not successful in providing insight into the
shape of the window due to the number of weights, a model with fewer degrees of

freedom should be explored.



Chapter 4

A neural network model of auditory scene

analysis

4.1 Introduction

The ability of a listener to pay attention to a particular speaker in a noisy room or in
a room with other speakers, e.g. at a cocktail party, attests to the robustness of the
auditory perceptual system. Even though these multiple sound sources mix together
their harmonics to produce one signal at the listener’s ear, the auditory system is
capable of teasing apart this jumbled signal to recognize different mental objects for
the different sound sources. The ability to segregate these different signals has been
termed auditory scene analysis (Bregman, 1990). The scene analysis corresponds
to the mechanisms by which the auditory system selectively groups certain acoustic
features, while excluding others, to form internal representations of auditory objects.

An analysis of the mechanisms of auditory scene analysis is important for under-
standing how the human auditory perceptual system operates, as well as for techno-
logical applications. While speech recognition systems have improved greatly within

the last decade, they are still prone to noise and interference from other speakers.

4.1.1 Auditory scene analysis

The nomenclature associated with auditory scene analysis contains several keywords:

source, stream, grouping and stream segregation. The source is a physical, external
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Figure 4-1: A groups better with B if they are closer in frequency. However, simulta-
neous cues, such as common onsets, common offsets and harmonicity, can help group
B and C. After Bregman and Pinker (1978).

entity which produces sound; e.g. a speaker. The perceptual correlate of this source is
a stream, i.e. it is “what the brain takes to be a single sound” (Bregman, 1984). The
stream is created by the perceptual grouping and segregation of acoustic properties
that are thought to correspond to an object. Grouping and stream segregation,
or streaming, assign appropriate combinations of frequency components to a stream.
For an exhaustive review of auditory scene analysis, the reader is referred to Bregman
(1990).

The scene analysis process can be thought of as two processes that interact: a
simultaneous grouping process and a sequential grouping process. For example, in
Figure 4-1, the simultaneous grouping process tries to group B and C together if they
have synchronous onsets and offsets, or if they are harmonically related. Similarly,
the sequential grouping process tries to group A and B together based on their

frequency and temporal proximity.
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4.1.2 Grouping principles

In order to denote which acoustic attributes correspond to a stream, researchers,
including Gestalt scientists and, more recently, Bregman (1990) and his colleagues,

have suggested several grouping principles:

e Proximity

The proximity grouping principle is shown in Figure 4.1. If two tones are
closer together in frequency and time, then it is more likely that they should
be grouped together, e.g. A and B should be grouped together if they are close

enough.

e Closure and belongingness

Closure and belongingness lead to percepts of continuity and completion. Clo-
sure is the perceptual phenomenon of completing streams when there is evi-
dence for it. For example, listeners hear a tone continuing through noise (Figure
4-2), even though the tone is not present during the noise (Miller & Licklider,
1950). Thus, the perceptual system completes the tone across the noise, given
the evidence that the same frequency tone is present on either side of the noise.

This is also known as the auditory continuity illusion.

e Good continuation

Good continuation states that an object’s sound does not make rapid jumps,
but instead continues smoothly. For example, in Figure 4.2 the slope of the
tone is the same on either side of the noise, and thus should be grouped together
due to good continuity of the tone. However, if the post-noise tone was at a
distant frequency, then the tone would not have good continuity and would not

stream across the noise. Note that continuity is closely related to proximity.
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Figure 4-2: Stimulus and percept of the continuity illusion. (a) shows the stimulus
that is presented to listeners, and (b) represents the percept. Note that in the
stimulus, the tone does not continue through the noise, but stops at the onset of
the noise, and continues at the offset of the noise, but the percept is that the tone

continues through the noise.

e Common fate

Common fate states that those attributes which are going through similar man-

ifestations should be grouped together. For example, those frequency compo-

nents which originate from the same spatial location share the same “fate”,

and therefore, should correspond to the same object. Similarly, those frequency

components which are being modulated (frequency or amplitude) at the same

rate or have synchronous onsets and offsets should correspond to an object.

e Principle of “exclusive allocation”

This principle states that attributes are assigned to one stream or another, but

not both. While this principle seems to hold in sequential streaming, it can

fail in simultaneous streaming, where harmonics of two streams can overlap.
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4.1.3 Primitive versus schema-based segregation

Bregman (1990) noted that auditory stream segregation consists of a primitive, non-
attentive, unlearned process and a schema-based, attentive, learned process. Breg-
man and Rudnicky (1975) found that tones in an unattended stream can capture
tones from an attended stream. In addition, van Noorden (1975) presented a repeti-
tion of two alternating tones whose frequency and temporal spacing were manipulated
to subjects. van Noorden obtained two curves: the temporal coherence boundary
(TCB) and the fission boundary (FB). The TCB corresponds to the boundary where
the frequency separation between the temporally adjacent tones was too large to
hear one stream. The FB corresponds to the point where the two frequencies were
too close in frequency to be heard as separate streams. The FB varied little as a
function of the tone repetition rate, and was mainly a function of the frequency
separation. On the other hand, the TCB showed that as the frequency separation
between the tones increased, one needed to slow down the repetition rate in order
to maintain one stream with both tones. Bregman (1990) argued that the FB cor-
responds to an attentional mechanism and the TCB corresponds to non-attentional
mechanism, and noted that the schema-based mechanisms can override the primitive
mechanisms. The mechanism proposed here addresses the pre-attentive, primitive

segregation mechanisms.

4.2 Grouping cues

One can find acoustic attributes that correspond to the grouping principles. The
attributes include temporal and frequency separation, harmonicity, spatial location,

amplitude modulation, frequency modulation, and onsets and offsets.
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Figure 4-3: When A and B are presented by themselves, listeners could easily judge
the order of them. If A and B were flanked by tones F, then listeners had a more dif-
ficult time. However, if the captor tones C surrounded the flankers, then F streamed
with C, leaving A-B to a different stream, allowing the listeners to hear the order
once again. After Bregman and Rudnicky (1975).

4.2.1 Temporal and frequency separation

Bregman and Pinker (1978) showed that tones in a repeating sequence tend to group
if they are closer in frequency, e.g. A and B in Figure 4-1. In addition, faster
presentation rates of alternating high and low frequency tones causes the two tones
to be segregated into 2 streams (Bregman and Campbell, 1971). The effect of faster
presentation rates is to narrow the temporal separation between adjacent instances of
the high tone (and low tone), allowing for streaming of the high tone (and low tone).
The Bregman and Rudnicky (1975) stimuli, which are shown in Figure 4-3, show how
tones can be captured into a stream by having tones that are close in frequency. When
A and B were presented by themselves, listeners could easily judge the temporal
order. When A and B were flanked by tones F, listeners had a more difficult time.
However, if the captor tones C surrounded the flankers, then F streamed with C,
A-B split into a different stream, and the listeners could again hear the order of
A-B. Thus, if A and B are in the middle of a stream, their order is more difficult to

determine.
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4.2.2 Continuity illusion

As mentioned above, proximity combined with closure has led to the auditory con-
tinuity illusion. In the continuity illusion, sound A seems to continue through sound
B, even though sound A is not present during sound B. This illusion works for a
tone, or a glide, continuing through noise (Figure 4.-2).

A more complex example is shown in Figure 4.4. The top two figures show the
two different stimuli that Steiger (1980) presented to listeners. In (b), the broadband
noise replaced the glide portion. However, for both the stimuli in (a) and (b), listeners
heard the two streams shown in (c) and (d). In (b), a third stream was also heard
corresponding to the broadband noise bursts. Thus, the glide complex had been
completed, or continued, through the noise. This experiment is important in that
the principle of “good continuation” have been overcome by frequency proximity.

Another effect of continuity derives from Bregman and Dannenbring (1973),
which is shown in Figure 4.5. In this, listeners were presented with a cyclic pat-
tern of high (H) and low (L) tones, which are either connected (a), or point towards
each other (b), or have no trajectory between them (c). Listeners heard one stream in
(a) and two streams in (c), but there was a higher probability of hearing one stream
over two streams in (b), where they are pointing towards each other. While this
can be seen as lending evidence for trajectory mechanisms, it fits in with frequency

proximity.

4.2.3 Harmonicity and pitch

Every periodic source has frequency components, called harmonics, at integer multi-
ples of the fundamental frequency, Fy. The subjective experience of Fp is denoted as
pitch, and is influenced by the harmonic content and other attributes of the signal.

Consider a speaker producing a vowel at a particular fundamental frequency, e.g.
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Figure 4-4: Stimuli and percept of the experiment by Steiger (1980). (a) and (b)
show the stimuli that were presented to the subjects. In (b), the noise spectra is not
added to the glides, but actually replaces the glide portions. For both the stimuli
in (a) and (b), listeners hear the two streams shown in (c) and (d). In (b), a third
stream is heard corresponding to the broadband noise bursts. After Steiger (1980).
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Figure 4.5: Listeners are presented with a cyclic pattern of high (H) and low (L)
tones, which are either connected (a), or point towards each other (b), or have no
trajectory between them (c). The effect is that listeners heard one stream in (a) and
two streams in (c), but that there was a higher probability of hearing one stream in
(b), where they are pointing towards each other. After Bregman and Dannenbring

(1973).
150 Hz. The vowel contains harmonics at integer multiples, e.g. 300, 450, 600, etc,
and the relative amplitudes of these harmonics lead to a given vowel percept. Since
a set of related harmonics will correspond to the same source, the pitch can be used
to group these harmonic components.

Harmonics of a complex tone can be segregated out from the tone if it is mistuned
by 1.5 to 3%, as well as causing the complex pitch to shift. If the mistuning is greater
than 3%, the harmonic has little effect on the pitch, and is still heard as a second
source (Moore, Glasberg, & Peters, 1985). Also, lower harmonics are easier to capture
from a complex than higher harmonics, and harmonics are easier to capture out of
a complex if the neighboring harmonics are removed (van Noorden, 1975). Partials
spaced 14 semitones apart fuse better than ones that 16 semitones apart (Bregman,
1990). A semitone is the smallest pitch interval in Western music, and two tones
separated by a semitone corresponds to tones at frequencies f and (1.06)f. These

effects are related to the resolution of the harmonics within the auditory channels
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(Cohen, Grossberg, & Wyse, 1994).

Segregation based on harmonicity is used by listeners in speech perception. It has
been shown that listeners can use Fy to segregate multiple voices. Listeners’ identi-
fication of two concurrent vowels increases as the difference in the two Fy increases,
and plateaus between .5-2 semitones (Scheffers, 1983). When Fy was an octave
apart, the identification was also very poor (Brokx & Noteboom, 1982; Chalika &
Bregman, 1989). Since an octave corresponds to a doubling of frequency, half the
harmonics for the two vowels will overlap. Tt should be noted that listeners could
identify concurrent vowels with the same Fy with greater than chance accuracy,
implying that listeners can use schema-based segregation. In addition, a formant
frequency (frequencies with greater energy that correspond to vowel identity) of a
single vowel become segregated when the formant has a differing Fy (Broadbent
& Ladefoged, 1957; Gardner, Gaskill, & Darwin, 1989). Finally, speech stimuli
with discontinuous pitch contours tend to segregate at the discontinuities (Darwin
& Bethell-Fox, 1977).

While the harmonicity cues can cause components to group, it can compete with
frequency proximity cues leading to a bounce or cross percept in the perception of

crossing glides.

4.2.4 Bounce and cross percept in crossing glide complexes

The influence of harmonicity is seen in the experiments of Bregman and Doehring
(1984), who showed that a glide can be captured into a stream if two partials form
a harmonic frame around the glide. While harmonicity can cause streaming, glides
which cross produce a bounce percept, presumably due to frequency proximity at
the crossing point (Halpern, 1977; Tougas & Bregman, 1990). A bounce percept

corresponds to hearing two streams, one with a “U” shaped petcept and another with
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Figure 4-6: Stimuli and listeners’ responses in Halpern (1977) for different harmonic
conditions. The complex glides were all 1 second long, and the numbers next to a
glide is its harmonic number. The numbers below each figure corresponds to the
preference of hearing a bounce or a cross: numbers greater than 2.5 correspond to a
bounce percept, and numbers below 2.5 correspond to a cross percept. After Halpern
(1977).
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a “N” shaped percept, due to the crossing of glides. The cross percept corresponds
to hearing two streams, each stream containing one of the glides. Halpern (1977)
presented the six different one second glide stimuli shown in Figure 4-6 to subjects
and asked them to rate how well they produced a bounce percept. The numbers below
each figure corresponds to the preference of hearing a bounce or a cross: numbers
greater than 2.5 correspond to a bounce percept, and numbers below 2.5 correspond
to a cross percept. The numbers next to the glides correspond to the harmonic
number of an underlying Fp. The stimuli in (a) and (d) produced a bounce percept,
while the others produced a cross percept. This experiment shows that the harmonic
structure in (b) and (c) help to overcome the ambiguity at the crossing point that
occurs in (a) and promotes a cross percept.

Tougas and Bregman (1990) performed an experiment very similar to that of
Halpern. Tougas and Bregman had four different harmonic stimuli: rich crossing,
rich bouncing, all pure, and all rich (Figure 4-7). All but the rich crossing condition
produced a bounce percept, even when the interval I was filled with silence, noise, or
just the glides. The bounce percept was greatest for rich bouncing, then all pure, and
then all rich, for all three interval conditions. The consequence of this experiment is
that regardless of noise, silence, or glide during the crossing point, one gets the same

percept.

4.2.5 Spatial location

While spatial location seems to be a strong principle for grouping, the auditory sys-
tem does not treat it as a dominant cue. The principle that frequency components
arising from the same spatial location should belong to the same object seems reason-
able, but the pliable nature of sound confounds the unambiguous implementation of

this idea. Since sounds can travel around objects or corners, one object’s sound can
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Figure 4.7: Stimuli of Tougas and Bregman (1990) for four different harmonic condi-
tions. All but the rich crossing condition produced a bounce percept, even when the
interval I was filled with silence, noise, or just the glides. The order, from greatest
to the least, of bounciness was rich bouncing, all pure, and all rich. After Tougas
and Bregman (1990).
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travel through another object’s sound. Moreover, two sounds can arise from the same
location, e.g. two talkers on a monophonic radio, which listeners can easily segregate.
Thus spatial cues alone are not sufficient to separate streams. Shackleton, Meddis,
and Hewitt (1994) presented two different concurrent vowels to listeners and varied
the spatial and pitch separation of the two vowels. They found no improvement in
identification of both vowels by introducing a spatial difference, while keeping the
pitch the same for both vowels. However, by introducing a pitch difference and no
spatial cue, performance improved by 35.8%. With both a pitch difference and a
spatial difference, the performance improved by 45.5%.

In a free-field environment, there can be up to a 10 dB improvement in intelli-
gibility if the sources are spatially separated (Bronkhorst & Plomp, 1988; Gelfand,
Ross, & Miller, 1988). This effect could, however, be due to head shadowing improv-
ing the signal-to-noise ratio at one of the ears, and not due to binaural localization
per se. However, studies using one spatial lateralization cue, interaural time dif-
ferences (ITD), over headphones have shown only a slight improvement (4 dB) in
intelligibility (Bronkhorst & Plomp, 1988; Carhart, Tillman, & Greetis, 1969; Levitt
& Rabiner, 1967).

One piece of evidence that spatial cues effect segregation is binaural masking level
difference (BMLD). In this phenomenon, a tone, which is masked by white noise, is
presented to both ears, and the level of masking is determined. If a 180 degree phase
shift is then induced in one of the tones, then the tone becomes more perceptible,
and a new masking level is determined. The difference betwecn the two masking
levels is the BMLD. Thus, the ability to perceive the tone was improved by making
the tone derive from a different spatial location.

Other experiments have shown that the binaural match between frequency com-

ponents have to be nearly exact if the auditory system is going to group them based
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Figure 4-8: (a) Scale illusion in which a downward and an upward scale are being
played at the same time, except that every other tone in a given scale is presented
to the opposite ear, corresponding to an L or R for left and right ear. (b) The result
is that listeners group based on frequency proximity, and heard the two streams A
and B. After Deutsch (1975).

on spatial cues. Steiger and Bregman (1982) presented a repeating cycle consisting
of a two-tone captor (C) followed by a two-tone target (T) to the left ear. In addi-
tion, they presented a 4-tone masker (M) to either the left or right ear, which was
synchronous with the target. They manipulated the harmonic structure and the ear
to which they presented the masker. They found that binaural fusion of the masker
and target occurred when the harmonics of M and T matched exactly. However, if
the harmonics of M and T differed (greater than 4% for frequencies less than 1 kHz),
the monaural spectral (frequency components) fusion was greater and C streamed
with T. Cutting (1976) presented two tokens of /da/ to both ears with an ITD.
When the ITD was 4 ms, subjects were more likely to hear two objects. In addition,
Cutting showed that if one /da/ was synthesized at 100 Hz and another at 102 Hz,
then listeners almost always heard two sources. Thus, the spectral match across the
ears has to be quite exact.

Grouping can also affect perceived location. If a tone located in the medial plane
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is captured by a left ear tone (due to frequency proximity), as opposed to a right ear
tone, then the central tone will be perceived to come from the left side (Bregman &
Steiger, 1980). The scale illusion of Deutsch (1975) also illustrates this point (Figure
4.8a). In this illusion, a downward and an upward scale are played at the same time,
except that every other tone in a given scale is presented to the opposite ear. In the
figure, the ear presentation is shown as an L or R for left and right ear. The result is
that listeners grouped the sounds based on frequency proximity, and heard the two
streams A and B shown in Figure 4-8b. In addition, right-hand listeners stated that
they heard the higher tones (A) in the right ear, and the lower tones (B) in the left
ear.

Overall, it seems that spatial cues are secondary cues, and the perceptual system

relies more on harmonicity and proximity cues.

4.2.6 Amplitude modulation (AM)

Amplitude modulation (AM) can be a possible cue if the perceptual system groups
those frequency components which have correlated amplitude fluctuations. One effect
of AM is that the perception of a tone, which is masked by a noise band centered on
the tone, can become easier to perceive if another band of noise is modulated with the
centered noise (Hall & Grose, 1988). The release of the tone from masking is known as
comodulation masking release (CMR). While this effect exists, a recent experiment by
Summerfield and Culling (1992) showed that at slow AM rates (2.5Hz), segregation
of two vowels did not improved due to AM. So, the influence of AM on segregation

of multiple voices of seems unlikely.
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4.2.7 Frequency modulation (FM)

_ Frequency modulation (FM) could act as a streaming cue if the auditory system
could detect correlated frequency changes among spectral components. One needs
to distinguish coherent FM from incoherent FM. In coherent FM, all partials (a
harmonic or inharmonic component of a complex tone) are modulated at the same
rate. In incoherent FM, the partials are modulated independently. Changes in
Fy can correspond to coherent FM since all the harmonics are being changed by a
proportionate amount. Thus, segregation based on coherent FM could be a result of
changes in Fy.

The results from recent psychophysical experiments seem to imply that segrega-
tion based on FM is not used. Carlyon (1991) found that with inharmonic complex
tone pairs, listeners could not distinguish between coherent and incoherent FM, per
se. Extending this, Carlyon (1992) found that if listeners did discriminate between
coherent and incoherent FM, it was due to mistuning a harmonic and not to FM
explicitly. Moreover, McAdams (1989) showed that by adding vibrato and jitter
to different components of three vowel mixture, the components did not segregate.
Summerfield (1992) found that identification of a vowel presented with another vowel
did not improve when a difference in FM was used, and all the harmonics had been
randomly shifted. However, there was some benefit if the components of one vowel
in a two vowel presentation was frequency modulated while the other was not (Sum-
merfield & Culling, 1992). This result could be due to pitch difference cues though.

Thus, for the most part, it seems that FM is not used as cue for segregation.

4.2.8 Onsets and offsets

Common onset and offset cause grouping, even over sequential grouping (Bregman &

Pinker, 1978; Dannenbring & Bregman, 1978). Bregman and Pinker (1978) presented
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the stimulus shown in Figure 4-1 as a repeating sequence. They found that as A and
B were further separated in frequency, or:set and offset synchrony grouped B and C
together. However, as B and C became asynchronous, A and B grouped together to
form a stream.

The interaction between harmonicity and onset asynchrony was investigated by
Darwin and Ciocca (1992) . They found that if a harmonic started 160 ms before rest
of a complex tone, then it had a diminished influence on pitch of the complex tone.
Moreover, if it started 300 ms before before the complex, then it has no influence on
the pitch. Finally, Bregman and Rudnicky (1975) found that two 250 ms tones that
have 88% overlap fuse into one stream.

The effect of onset asynchrony has also been investigated in speech perception. If
a tone is added near the first formant of a synthetic vowel, causing the first formant to
shift, it leads to a different vowel percept. The original vowel percept can be restored
if the tone has a 30 ms onset asynchrony, implying that the tone and the original
vowel were in separate streams (Darwin, 1984; Darwin & Sutherland, 1984). Darwin
and Sutherland presented a 56 ms vowel, synthesized at a fundamental frequency of
125 Hz. They found that if the harmonic at 500 Hz started 240 ms earlier (Figure
4-9a), then it had a diminished contribution to the vowel identity. If a 1000 Hz tone
was then added that started at the same time as the 500 Hz harmonic and stopped at
the vowel (Figure 4-9b), then the harmonic’s contribution increased slightly. Thus,
the addition of a harmonic of 500 Hz, namely the 1000 Hz tone, caused them to be
grouped together and thereby disinhibiting the contribution of the harmonic during
the complex tone. This manipulation showed that the reduced contribution of the
harmonic was not due solely to adaptation. Roberts and Moore (1991) extended this
observation to show that the tone can be harmonic or inharmonic.

While not as strong as onset asynchrony, offset asynchrony influences grouping. A



87

~ 1000 = 1000
g i
g —_— —_—
]
g. 500 500
&= i — - —
] ] L I
0 240 296 0 20 296
Time (ms) Time (ms)
(a) (b)

Figure 4.9: (a) If a harmonic at 500 Hz started 240 ms before the rest of a short
synthetic vowel, then it has a diminished contribution to the vowel identity. (b) If
a 1000 Hz tone was added that started at the same time as the 500 Hz harmonic
and stopped at the vowel, the harmonic’s contribution increases slightly due to the
grouping of the 500 and 1000 Hz tones. After Darwin and Sutherland (1984).

harmonic which has an offset asynchrony of 30 ms with respect to a vowel complex

contributes less to its identity than one with a synchronous offset (Darwin, 1984;

Darwin & Sutherland, 1984).

4.3 Existing models of segregation

Meddis and Hewitt (1992) presented a static model that segregated concurrent vowels
based on pitch. The pitch was derived using an autocorrelation. However, the model
did not handle temporally-varying stimuli. Brown (1992) and Cooke (1991) have
presented complex models which perform segregation of temporally-varying stimuli.
These models use pitch cues, derived from autocorrelation methods, to perform seg-
regation. However, these models use time-frequency kernels to achieve segregation.
In other words, they treat the stimuli as a static pattern, a spectrogram, and then
perform dynamic programming and spatio-temporal processing, which treats time
as another spatial dimension. None of these models has tried to model the process

dynamically.
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4.4 Model of auditory streaming and grouping

The neural model developed in this thesis suggests how harmonicity and frequency
proximity interact in the brain. The model, which is shown in Figure 4-10, consists
of several stages. The model first preprocesses the incoming signal in the periph-
eral processing modules. The preprocessed signal is then used to group frequency
components based on pitch.

The first several stages are based on the physiology and psychophysics of the audi-
tory periphery (Cohen, Grossberg, & Wyse, 1992, 1994). The peripheral processing
preemphasizes the signal, or boosts the amplitude of higher frequencies, which em-
ulates the outer and middle ears. Next, the preemphasized signal is filtered by a
bank of bandpass filters, which emulates the cochlea. Finally, an energy measure is
obtained at the output of these filters.

This energy measure feeds into the different fields in the spectral stream layer,
where different fields correspond to different streams. There is competition between
these sheets for each frequency component. No component can be simultaneously
allocated to two streams after the competition acts. In addition, this competition
causes a component that is not harmonically related to the other components in a
given stream to “pop out” of the spectrum assigned to that stream and become ac-
tive in another stream. The spectral stream layer has reciprocal connections with the
pitch stream layer to determine which spectral components belong to a given pitch.
Thus, a pitch is associated with each active stream. The feedback from the pitch
stream layer reinforces consistent components and suppresses inconsistent compo-
nents, as in Adaptive Resonance Theory (Grossberg, 1980; Carpenter & Grossberg,
1991). Therefore, the listener’s percept corresponds to the activity at the spectral

stream layer when there is resonance between it and the pitch stream layer.
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Figure 4-10: Block diagram of the auditory streaming model.



90

4.4.1 Auditory peripheral processing
Outer and middle ear

The outer and middle ear act as a broad bandpass filter, linearly boosting frequencies
between 100 to 5000 Hz. An approximation to this is to preemphasize the signal using

a simple difference equation:

y(t) = z(t) — A*z(t — At), (4.1)

where A is the preemphasis parameter, and At is the sampling interval. In the
simulations, A was set to 0.95, and A{ = 0.125 ms, corresponding to a sampling

frequency of 8 kHz.

Cochlear filterbank

The overall effect of the basilar membrane is to act as a filterbank, where the response
at a particular location on the basilar membrane acts like a bandpass filter. This
bandpass characteristic has been modeled as a fourth order gammatone (de Boer &

de Jongh, 1978; Cohen et al., 1994) filter:

tn—le=2mt«b(fo) cos(2m fot + ¢) t >0,
g!o( )= { . (4'2)
otherwise,
and its frequency response is:
Gp(f)=[1+5(f = fo) [6(fo)]"s (4.3)

where n is the order of the filter, fo is the center frequency of the filter, ¢ is a phase

factor, and b(f) is the gammatone filter’s bandwidth parameter, corresponding to:
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b(f) = 1.02ERB(). (4.4)

The equivalent rectangular bandwidth (ERB) of a gammatone filter is the equivalent

bandwidth that a rectangular filter would have if it passed the same power:

ERB(f) =6.23¢7%f2 + 93.39¢73f + 28.52. (4.5)

Sixty gammatone filters, which were equally spaced in ERB, were used to cover the

range 100 Hz to 2000 Hz. The output of each gammatone filter was converted into

an energy measure.

Energy measure

The energy measures a short-time energy spectra (Cohen et al., 1992, 1994):

At Wit . oA
es(t) = 77 D lgs(t — kAt)Pe~, (4.6)

w k=0
where e;(t) is the energy measure output of the gammatone filter g;(¢) centered
at frequency f at time t, W is the time window over which the energy measure is
computed, and o represents the decay of the exponential window. In the simulations,
a = 0.995, and W = 5 ms. The output of the energy measure feeds identically to

the multiple fields in the spectral stream layer.

4.4.2 Spectral stream layer

Segregation based on harmonicity is achieved by having objects compete for fre-
quency channels, which are excited by their pitch counterparts and supported by the
bottom-up input (Figure 4-11). The spectral stream layer is a plane with one axis

representing frequency, and the other axis representing different auditory streams.
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Figure 4-11: Interaction between the energy measure, the spectral stream layer, the
pitch stream layer, and the pitch summation layer. The energy measure layer is
fed forward in a frequency-specific one-to-many manner to each frequency-specific
stream node in the spectral stream layer. In addition, this feed-forward activation is
contrast-enhanced. There is also competition within the spectral stream layer across
streams for each frequency so that a component is allocated to only one stream at
a time. Each stream in the spectral stream layer activates its corresponding pitch
stream in the pitch stream layer. Each pitch neuron receives excitation from its
harmonics in the corresponding stream. Since each pitch stream is a winner-take-all
network, only one pitch can be active at any given time. Across streams in the pitch
stream layer, there is asymmetric competition for each pitch so that one stream is
biased to win and the same pitch can not be represented in another stream. Finally,
the winning pitch neuron feeds back excitation to its harmonics in the corresponding
spectral stream. The stream also receives non-specific inhibition from the pitch
summation layer, which sums up the activity at the pitch stream layer for that
stream. This non-specific inhibition helps to suppress those components that are not
supported by the top-down excitation, which plays the role of a priming stimulus or
expectation (Carpenter & Grossberg, 1991).
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Each frequency channel in the energy measure, ey, feeds up to each stream’s
corresponding frequency channel in the spectral stream layer Sy in a one-to-many
manner, so that all streams in the spectral stream layer receive equal bottom-up
excitation. After the spectral stream layer becomes activated, the different streams
activate their corresponding pitch streams in the pitch stream layer. When a pitch
is selected in a given stream, it feeds back excitation to its spectral harmonics, and
inhibits that pitch value in other streams in the pitch stream layer. In addition,
non-specific inhibition, via the pitch summation layer, helps to suppress components
that do not belong to the given pitch within its stream.

The following equation describes the dynamics of the spectral stream layer:

Siy = —ASis + [B = Sif]&is — [C + Si) Ty (4.7)
& = Z Dyqs(eq) + FZ zk: My kpg(Pip) (k) (4.8)
g P
Tip =) Eqpseg) +J 3D NyolSig)* + LT (4.9)
9#s k#i g

where S;; is the activity of the spectral stream layer neuron corresponding to the
ith stream and frequency f. Term —AS;; in (4.7) is the spontaneous decay. Term
Dy,s(eg) in (4.8) is the excitation from the energy measure, which has been passed

through a sigmoid s(z) to compress the dynamic range:

2 2y ir.
o(z) = { z?[/(Ny+1z?%), ifr>0 (4.10)

0, otherwise
Similarly, E;;s(eg) in (4.9) is the inhibition from the energy measure, which has
been passed through a sigmoid s(z). Thus, with both Dy,s(e,) and Ey,s(e,), each
spectral stream layer receives a contrast-enhanced version of the energy measure.Both

Dy, and Ey, are Gaussians which are centered at frequency f, and have standard
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deviation parameters, op and og, and scaling parameters D and E, respectively:

Dyy = DG(f,0p) = Daml/2_7re-'5(f-9”/°?> (4.11)
Efy = EG(f,0r) = EUE\I/Ee—w—w’/v’s (4.12)

In addition, the term F' 3", 5" My ,9(Pip)h(k) in (4.8) is the sum of all the pitches p
which have a harmonic kp near frequency f in the pitch stream layer corresponding

to stream i. In 4.8, g(z) is a sigmoid function:

z?/(N, + 2?), ifz>0

ga) = { =/t (4.13)
0, otherwise

h(k) is the harmonic weighting function, which weights the lower harmonics more

heavily than higher harmonics:

(4.14)

1 — Myploga(k), if 0 < Mploga(k) < 1
h(k)={ nloga(k), i nloga(k)

0, else
and My;, is a normalized Gaussian, so that if a harmonic is slightly mistuned it
will still be within the Gaussian and thus get partially reinforced. The width of the
Gaussian dictates the tolerance of mistuning. Kernel My, is centered at frequency

f and has a standard deviation parameter, oas:

1
Myyp = G(f,om) = aMme"“"”""”’/"’M (4.15)

The term J Fiz; 3y Nyg[Siglt in (4.9) represents the competition across streams for
a component, so that a harmonic will belong to only one object. This inhibition
embodies the principle of “exclusive allocation.” Since a harmonic can be mistuned

slightly, a Gaussian window Ny, exists within which the competition takes place.
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Kernel Ny, is centered at frequency f and has a standard deviation parameter, oy:

1 2,2
N;, = = -.5(f~g)*/0% 4.1
I G(fv UN) O'N\/é;e ( 6)

Term LT; in (4.9) is the inhibition from the pitch summation layer, which non-
specifically inhibits all components in stream i. The effect of this is to subtract out
those non-harmonic components which are not reinforced by the top-down excitation
from the pitch unit in the pitch stream layer. This is akin to the matching process
used in Adaptive Resonance Theory (Carpenter & Grossberg, 1991; Grossberg, 1980).

As a result of this matching process, a spectral stream layer neuron can become:

e Active if only an energy input is present (bottom-up automatic activation),

Inactive if only a pitch input is present (top-down priming),

Active if both energy and pitch inputs are present (bottom-up and top-down

consistency),

Inactiveif both energy and pitch inputs are present, but the spectral component

is not a harmonic of pitch (bottom-up and top-down inconsistency).

The first constraint allows bottom-up activation to initiate the segregation process.
So, if there is no pitch unit that is active, then there is no inhibition from the pitch
stream layer, via the pitch summation layer. Thus, the spectral stream layer will
become active. The second constraint makes sure that the pitch units do not activate
spurious spectral units by themselves, but only in conjunction with an input. This is
accomplished by letting the inhibition from the pitch summation layer be no smaller
than the excitation from the pitch units. The third and fourth constraints state that
only harmonics of the particular pitch which are present in the input are excited.

This is accomplished by setting the combined excitation from the input and pitch
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stream unit to be greater than the inhibition from the pitch summation layer. If a
spectral unit is a harmonic of a pitch P and it has an input at that frequency, then
the spectral unit will remain active. HoWever, if the unit is not a harmonic (or a
slightly mistuned harmonic), then the inhibition from the pitch summation layer will
be greater than only the bottom-up input. In all the simulations, the parameters
wereset to: A=1,B=1,C=1,D =500,E =450,F = 3,J =1000,L = 5, M), =
3,N = .01, N, = 10000, N, = .01,0p = .2,0p = 4,0 = .2, and oy = 1.

4.4.3 Pitch summation layer

The pitch summation layer sums up the pitch activity at stream i, and provides
inhibition LT; to stream i’s spectral stream layer in (4.7)-(4.9) so that only those

harmonic components that correspond to the selected pitch remain active:

T, = —AT: + [B - T ¥ 9(Py) (4.17)

where g(z) is the sigmoid function described above. In the simulations, A = 100, B =

100.

4.4.4 Pitch stream layer

To determine the pitch, the neural network pitch model of Cohen, Grossberg, and
Wyse (1992, 1994), called the SPINET model, was used. The original pitch model
had two components: the spectral layer and a pitch layer. The spectral and pitch
representations have been modified so that there are multiple streams such that
competition occurs between pitch units within and across streams. The modified

pitch strength activation is:

Pip = —APyp + (B — Pyl€ip — [C + PylZip (4.18)
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Ep=FE Z Z My ip[Sif — P]+h(k) (4.19)
L §
Tp=J 2 Hpog(Piy) + LZ.‘J(PIW)’ (4.20)
p#q k>i

where P, is the pth pitch unit of object i. The term E 30\ 3=f My 4p[Siy — T)*h(k)
in (4.19) corresponds to the Gaussian excitation M, from the spectral layer which
have suprathreshold components near a harmonic kp of pitch p, which is weighted by
the harmonic weighting function h(k). The harmonic weighting function k(k) and
the Gaussian My x, are same as in the spectral layer (eq. 4.14 and 4.15, respectively).
The term J ¥, Hpeg(Pig) in (4.20) represents the symmetric off-surround inhibition
across pitches within a stream. The off-surround competition across pitches within
a stream makes the layer act as a winner-take-all so that only one pitch tends to be
active within a stream. In addition, H,, is defined to be one within a neighborhood
around pitch unit j and zero otherwise, so that a stream can maintain a pitch even

if the pitch fluctuates.

I, if{p—q|>
Hyy = [p=al>on (4.21)
0, else

The term L ¥; g(Pip) in (4.20) represents asymmetric inhibition across streams for
a given pitch, so that only one stream will activate a given pitch. This asymmetry
across streams also provides a systematic choice of streams, and prevents deadlock
between two streams for a given pitch, since all pitch streams receive equal bottom-
up excitation from the spectral layer initially. In all the simulations, the parameters
were set to: A = 100,B = 1,C = 10, E = 5000,J = 300,L = 2,04 = .2, and
I = .005.
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4.5 Simulatfon results of model

The model is here shown to qualitatively emulate bounce percepts for crossing glides,
as well as the continuity illusion. Figure 4-12 shows the stimuli and the listeners’
percepts that the model emulates. It should be reiterated that the percept that a

listener would hear corresponds to the resonant activity in the spectral layer.

4.5.1 Inharmonic simple tones

If two inharmonic tones are presented, then they should segregate into two different
streams since they do not have a common pitch (Moore et al., 1985). Figure 4-12a
shows the stimulus and the listeners’ percept for two inharmonic tones. Figure 4-13a
shows the spectrogram for two inharmonic tones, whose frequencies are 358 Hz and
1233 Hz. Figure 4-13b shows the result after peripheral processing, i.e. the result
after the energy measure. Figure 4.14 shows the resulting spectral and pitch layers
for the two tone stimulus for two different streams. The figures show that initially
the streams compete for the tones, but the first stream, which is inherently biased
in the pitch stream layer, wins the higher frequency component, allowing the second
stream to capture the lower frequency tone. This figure also shows that the higher
frequency tone

Figure 4-15 shows a schematic of how the grouping process works for the two
inharmonic tones. After the two tones are processed by the peripheral processing, the
higher frequency tone has a larger activity due to the preemphasis. The preprocessed
activities feed into the spectral stream layers at time t = 0. Since there is no top-down
activity at the spectral stream layers, the two spectral layers are equally active. Next,
at time t = t1, the pitch stream layer receives activation from the spectral stream
layer. Since stream 1’s pitch layer is inherently biased over stream 2’s pitch layer,

and since the higher frequency tone has a larger activity, the 1233 Hz tone is chosen
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Figure 4-12: Stimuli and the listeners’ percepts that the model is capable of emu-
lating. The hashed boxes represent broadband noise. The stimuli consist of: (a)
two inharmonic tones, (b) tone-silence-tone, (c) tone-noise-tone, (d) a ramp or glide-
noise-glide, (e) crossing glides, (f) crossing glides where the intersection point has
been replaced by silence; (g) crossing glides where the intersection point has been re-
placed by noise, (h) Steiger (1980) diamond stimulus, and (i) Steiger (1980) diamond
stimulus where bifurcation points have been replaced by noise.
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Figure 4.13: (a) spectrogram and (b) result of energy measure for the two tone
stimulus.

by stream 1’s pitch layer. In addition, since the pitch layer is a winner-take-all
network, only one pitch can be active within a pitch stream layer. Once the 1233
Hz tone is chosen by stream 1, the corresponding frequency in stream 2’s pitch layer
is inhibited by the stream 1’s winning pitch neuron, allowing the 358 Hz tone to be
captured by stream 2’s pitch layer. Next, at time t = t2, the winning pitch neurons
excite their corresponding harmonic components in the spectral layer. In addition,
the non-specific inhibition (shown as the darker arrow) inhibits all components in
the spectral layer. Therefore, those components which are not specifically excited
by the pitch layer will be suppressed. For example, the 358 Hz tone is suppressed
in stream 1 since it is receiving top-down non-specific inhibition and no top-down
specific excitation; whereas the 1233 Hz tone receives top-down excitation allowing

it to remain active.



0.24975

Figure 4-14: Model results for the two tone stimulus. (a) spectral stream layer and
(b) pitch stream layer for stream 1; and (c) spectral stream layer and (d) pitch stream
layer for stream 2.
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Figure 4-15: Schematic of how the model segregates the two inharmonic tones into
two different streams. See text for explanation.
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4.5.2 Continuity illusion

The model is capable of producing the continuity illusion: continuation of a tone in
noise, even though the tone is not physically present in the noise (Miller & Licklider,
1950). In order to appreciate the result for tone-noise-tone condition, one should
consider the result of the model for a tone-silence-tone stimulus (Figure 4-12b). For
this stimulus, the tone should not continue across the silence, but should stop at the
onset of silence. Figure 4-16 shows the spectrogram and the result after the peripheral
processing for the tone-silence-tone stimulus. Figure 4-17 shows the resulting spectral
and pitch layers for the tone-silence-tone stimulus for two different streams. The
figures show that the first stream captures the tone, which decays into to the silent
interval but does not remain active in the silent interval. Since the model does not
have any onset /offset mechanisms, the spectral stream activity slowly decays into the
silent interval. The same stream then captures the tone after the silence as well. The
second stream is not active since there are no extraneous components to capture.

Now, consider the case where the silent interval has been replaced by noise, i.e.
the tone-noise-tone stimulus. For this stimulus, the tone percept should continue
across the noise, even though the tone is not physically present during the noise
interval. Figure 4-18 shows the spectrogram and the result after the peripheral
processing for the tone-noise-tone stimulus. Figures 4-19 shows the resulting spectral
and pitch layers for the stimulus for the first two streams, and Figure 4-20 shows a
third stream. The figures show that the first stream captures the tone, which then
continues through and past the noise interval.

The reason that the tone continues through the noise derives from two factors.
The first factor is that the spectral layer slowly integrates the input, and so, the noise
is temporally averaged, or smoothed over time. Due to this smoothing, if there is no

top-down activity, the noise is relatively constant over time. The second factor is that
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Figure 4-16: (a) spectrogram and (b) result of energy measure for the tone-silence-
tone stimulus.
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Figure 4-17: Model results for the tone-silence-tone stimulus. (a) spectral stream
layer and (b) pitch stream layer for stream 1; and (c) spectral stream layer and (d)
pitch stream layer for stream 2.
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Figure 4-18: (a) spectrogram and (b) result of energy measure for the tone-noise-tone
stimulus.

the top-down activity from the pitch layer remains active at the onset of the noise due
to the prior tone. Due to both of these factors, the noise at the same frequency as the
tone is reinforced by the top-down activity, while the other frequency components
are inhibited, allowing the “tone” to complete across the noise. The second and
third streams contain the other spurious noise. The reason that the second stream
captures the high frequency noise as opposed to the low frequency noise is due to
preemphasis: the noise at the highest frequency is most active, and so it is captured
by the second stream. If more streams were present in the model, then they would
contain other noise components.

Similar to the tone-noise-tone stimulus, the model is capable of producing the
continuity illusion for the ramped stimulus shown in Figure 4.12d. Figure 4.21 shows

the spectrogram and the result after the peripheral processing. Figures 4-22 shows the
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Figure 4-20: The (a) spectral and (b) pitch stream layers for stream 3 for the tone-
noise-tone stimulus.
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Figure 4-21: (a) spectrogram and (b) result of energy measure for the ramp stimulus.

resulting spectral and pitch Ia.yers for the stimulus for the two different streams. The
figures show that the first stream captures the upward glide, which then continues
through the noise interval. After the noise interval, the same stream captures the
downward glide, leading to the ramp percept. The reason that the ramp completes
across the noise is due to the same reason that the tone completes across the noise in
the tone-noise-tone stimulus; namely, the temporal averaging at the spectral stream
layer and the prior top-down excitation from the pitch stream layer. Also, during
the noise interval, some noise adjacent to the plateau is active since the top-down
inhibition is not strong enough to suppress this activity. Meanwhile, the second
stream contains the extraneous noise. If other streams were present, they would also

capture some noise components.
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4.5.3 Bounce percepts for crossing glides

The model is capable of qualitatively replicating the Halpern (1977) and the Tougas
and Bregman (1990) data. For these stimuli, one obtains bounce percepts for crossing
glides (Figure 4-12e), even if the crossing interval is replaced by silence (Figure 4-12f)
or noise (Figure 4-12g). Figure 4-23 shows the spectrogram and the result after the
energy measure for the standard crossing glide stimulus; and Figure 4-24 shows the
resulting spectral and pitch activity for the two streams. As one can see, one stream
contains the “U” percept, while the other stream hasv a “N” percept. The reason
one obtains the bounce percept for the standard crossing glide stimulus is due to
the following. Initially, the higher frequency glide is captured by the first stream
since it has a larger activation, and thus the lower frequency glide is captured by the
second stream. The glides are maintained within their streams as they approach the
intersection point. At the intersection point, the glides activate multiple, adjacent
channels at the spectral layer. These adjacent channels can belong to the two different
streams such that the larger frequency channel belongs to the first stream, and thus,
grouped with the upper glide; and the lower adjacent frequency channel belongs to
the second stream, and thus, grouped with the lower glide.

Figure 4.25 shows the crossing glide stimulus for the silent-center condition and
the result of the energy measure. Figure 4-26 shows the spectral and pitch layers for
two different streams. The result corresponds to a bounce percept, which does not
continue across the silent interval. The reason one obtains the grouping of the upper
glides derives from the following. The first stream captures the higher frequency glide
at the onset of the stimulus and after the silent interval since these component have
a larger activity than the lower frequency glides due to preemphasis. Since these
components have a larger activity, the first stream will choose these components,

leading to the grouping of the upper glides by stream 1, and the lower glides by
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Figure 4-23: (a) spectrogram and (b) result of energy measure for the crossing glide
stimulus.
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Figure 4.25: (a) spectrogram and (b) result of energy measure for the crossing glide
stimulus with silence replacing the intersection point.
stream 2; i.e. a bounce percept.

Figure 4-12g shows the crossing glide stimulus where the intersection point has
been replaced by noise, and the subjects’ percepts of a bounce that is completed
across the noise interval. Figure 4-27 shows the spectrogram and the result of the
energy measure for the crossing glide with noise-center stimulus, and Figure 4-28
shows the spectral and pitch layers for two different streams. Once again, the bounce
percept is evident, but there is continuity of the bounce through the noise interval.
Stream 2 shows some noise activity that “leaks” through, which is due to not enough
top-down inhibition. The reason that the model produces the bounce phenomenon
derives from the results of the continuity illusion and the standard crossing glide
stimulus. Initially, the upper frequency glide is chosen by stream 1, and the lower

frequency glide is chosen by stream 2, just as in the standard crossing glide stimulus.
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Figure 4.26: Model results for the crossing glide stimulus with silence replacing the
intersection point. (a) spectral stream layer and (b) pitch stream layer for stream 1;
and (c) spectral stream layer and (d) pitch stream layer for stream 2.
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Figure 4-27: (a) spectrogram and (b) result of energy measure for the crossing glide
stimulus with noise replacing the intersection point.

The continuity illusion explanation, e.g. the ramp stimulus, applies during the noise
interval. At the onset of the noise, the top-down activity from the pitch layer helps
maintain the “tone” across the noise interval at the same frequency as the offset of
the glide. In addition, the temporal averaging of the noise at the spectral stream layer
provides uniform activity over time that aids the resonance between the spectral and
pitch layers, and thus, maintaining the “tone” across the noise interval. At the offset
of the noise, the glides are at approximately the same frequency as the “tones” that
were continuing through the noise. Thus, these glides are grouped with the stream
that has a “tone” close to its frequency. As a result, one obtains a bounce percept,

where the bounce completes across the noise interval.
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Figure 4-28: Model results for the crossing glide stimulus with noise replacing the
intersection point. (a) spectral stream layer and (b) pitch stream layer for stream 1;
and (c) spectral stream layer and (d) pitch stream layer for stream 2.
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4.5.4 Steiger (1980) diamond stimulus

For the Steiger (1980) diamond stimulus (Figure 4-12h), the percept consists of two
streams, a “M” stream and an inverted “V” stream. This percept shows that the
principle of continuity can be overcome by frequency proximity. Figure 4-29 shows
the Steiger (1980) stimulus and the result after the peripheral processing. Figure 4-30
shows the spectral and pitch layer for two different streams. As one can see, the lower
“M” shaped component falls into one stream, while the inverted “V” is in the other
stream, which qualitatively emulates the percept. The reason the model emulates
the Steiger data is similar to the explanation for the bounce percept for the standard
crossing glide explanation. Initially, stream 1 is active with the lower frequency glide
and stream 2 is inactive, since there is only one component present in the stimulus.
At the bifurcation point, stream 1 continues with the lower frequency glide since this
frequency component was previously active in stream 1. In other words, due to the
temporal averaging of the spectral layer activity and resonance with the pitch layer,
the frequency component that was activated immediately prior to the bifurcation
point will remain active and group with the same frequency component immediately
after the bifurcation point. Since the first stream groups the lower frequency glides
together, the second stream is capable of capturing the higher frequency glides. Thus,
stream 1 contains the “M” percept, while stream 2 contains the inverted “V” percept.

Figure 4-31 shows the spectrogram and the result of the energy measure for the
Steiger (1980) stimulus where the bifurcation points have been replaced by noise.
Figure 4-32 shows the spectral and pitch layers for the two streams for the Steiger
(1980) stimulus when the bifurcation points have been replaced by noise. The figures
show that the “M” and the inverted “V” segregate into two different streams, and the
“M” continues across the noise interval. The noise activates other streams, which are

not shown. The reason the model emulates this percept derives from the explanation
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Figure 4.29: (a) spectrogram and (b) result of energy measure for the Steiger (1980)
diamond stimulus.



Figure 4-30: Model results for the Steiger (1980) diamond stimulus. (a) spectral
stream layer and (b) pitch stream layer for stream 1; and (c) spectral stream layer
and (d) pitch stream layer for stream 2.
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Figure 4-31: (a) spectrogram and (b) result of energy measure for the Steiger (1980)
diamond stimulus with noise bursts replacing the bifurcation points.

of the Steiger (1980) diamond stimulus and the continuity illusion, e.g. the ramp
stimulus. Stream 1 initially captures the increasing glide, while stream 2 is inactive,
just as in the Steiger (1980) diamond stimulus. During the noise interval, stream 1
completes across the noise interval just as in the ramp stimulus, allowing stream 2

to capture the inverted “V” component.
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4.6 Extension to model: Spatial location

This section outlines how spatial location cues can be incorporated into the model
to aid the segregation process. The spatial location cues indirectly influence group-
ing by assisting grouping based on pitch. Thus, spatial cues by themselves cannot
group objects, but require a pitch difference to exist, in keeping with the data from

Shackleton, Meddis, and Hewitt (1994).

4.6.1 Spatial location cues

The auditory system localizes sounds using two different mechanisms: interaural
time differences (ITD) and interaural intensity differences (IID). The concept behind
both ITD and IID is that the listener is comparing the signal between the two ears
(interaural) and making a judgment on the sound’s location.

ITD, which operates at low frequencies (less than 5 kHz), corresponds to compar-
ing the arrival time of a signal to the two ears. If a signal is to the left, it will arrive
at the left ear some microseconds before it arrives at the right ear. Thus at 0 ITD,
the source is centralized, and at other ITDs the source is more lateral. However,
ITDs only work for low frequency, where the wavelength is long compared to the
size of the head. Figure 4-33 shows a schematic representation of an object t';hat is
lateralized to the right. As the object emits a sound, it will arrive at the right ear
first, and then at the left ear 7 microseconds later, corresponding to the extra path
distance d that the source has to travel. -

At high frequencies, the head “shadows” a sound lateralized to one side, causing
an IID, or intensity difference. For example, if a high frequency sound is located to
the left, the intensity of the sound to the right ear is diminished compared to the left
ear. Thus, one can localize the sound by some computation based on the intensity

difference at the two ears. The extended model presented here incorporates only
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Figure 4-33: Geometric representation of spatial lateralization using interaural timing
differences (ITD).
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Figure 4-34: Block diagram of the extended streaming model.

ITDs in the segregation process.

4.6.2 Extended model

The extended model is shown in Figure 4-34. The model first preprocesses the
incoming signal in the peripheral processing modules. This preprocessed signal is
then used to determine spatial locations for the frequency components, and at the
same time group frequency components based on pitch using the spectral and pitch
stream layers from the original model. Segregation of components is accomplished

in the pitch and spectral stream layers; the spatial locations non-specifically prime
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their corresponding pitch stream layer to bias them towards grouping components.
Next, those components which have been grouped by pitch are reinforced based on
their spatial locations.

The peripheral preprocessing is identical for both the left and right “ears”, and
consist of the same module as in the original model. The output of this peripheral
processing is fed to the f-7 plane, where individual frequencies f are assigned to a
spatial location 7. 7 represents radial direction, taking on values from -600 to 600
ps. The value 7 = 0 corresponds to the central location, which is a location centered
between the “ears” and in front of the listener; 7 = —600 corresponds to a location
that is directly to the left of the listener; and 7 = 600 corresponds to a location that
is directly to the right of the listener. It is assumed that 7 maps to radial direction
in a linear fashion. It is also assumed that only one stream can occupy one spatial
location, except at the central “head-centered” location, where multiple streams can
be represented. Once components have been assigned to a given location, the location
non-specifically primes all the neurons in its corresponding pitch stream layer. Figure
4-35 shows how the spatial locations non-specifically primes the pitch stream layers,
and how a frequency component at a given spatial location in the f-r is reinforced
by its corresponding frequency component in the spectral stream layer.

The output of the right channel also feeds into the different streams of the spectral
stream layer. The spectral stream layers are the same as in the original model. The
pitch stream layer is modified so that all neurons within a stream get excited if there
are any components present at that given location. Thus, a pitch stream layer will
be biased to win over another pitch stream layer if there are components present at
that location. At the central location, the N streams are all excited. In addition, the
asymmetric competition across streams, term L 3;5; g(Psp) in equation 4.20, exists

only at the central location; non-central streams equally inhibit each other.



127

Left ITD T Right
-600 0 600c
olojolo ololololz ..
olololo oooog”’plane
olololo o |o|o|o|E
olo|olo|p|o o][e]le][e]le] AB:E)
o|o|ojojo[ojoyalo]|o(Q|O|Of & siwam
o] [e][e] [¢] OFOOO O|o y
Stream (i)
olol|o|olo ofoJoyo |0y |O|O| & spectrat
olo|ololo i Of0|0|0[O|O] & steam
10]fe][e][e](e} o|o|Oo|o]o|& ‘aver

Stream (i)

Figure 4-35: Interaction between spatial locations in the f-r field, pitch stream
layer, and the spectral stream layer. The non-specific inhibitory neurons are not
shown. Only one stream can occupy one spatial location, except at the central
“head-centered” location 7 = 0, where multiple streams can be represented. Once
a spatial location has been derived for all the components, the spatial location non-
specifically primes all the neurons in its corresponding pitch stream layer. At the
central location, the N streams are all primed. Once components have been grouped
based on pitch, the neurons in a spectral stream layer specifically excite the compo-
nents at their corresponding spatial location. At the central location, the spectral
neurons, corresponding to a given frequency, from all N streams excite the corre-
sponding neuron at 7 = 0.
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In addition, there is feedback from the spectral stream layer back to the f-7 plane.
The feedback consists of a specific excitatory feedback and a non-specific inhibitory
feedback, akin to the connectivity from the pitch stream layer to the spectral stream
layer. The specific feedback excites those harmonic components existing at a given
location where a pitch has been determined. At the central location, the spectral
neurons, corresponding to a given frequency, from all N streams excite the corre-
sponding neuron at 7 = 0. The spectral summation layer provides non-specific
inhibitory feedback to suppress those (inharmonic) frequency components that do
not belong to that pitch, allowing other spatial locations to capture that frequency
component, and in turn, leading to complete resonance within the model.

The extended model is capable of replicating the Deutsch (1975) scale illusion
(Figure 4-8), where a downward and an upward scale are being played at the same
time, except that every other tone in a given scale is presented to the opposite ear.
The result is that listeners group based on frequency proximity, and hear a bounce
percept. In order to understand how the model produces this phenomenon, one
needs to recall that the extended model does not group based on spatial location,
but instead, spatial location only primes the grouping based on pitch process. For
the first two simultaneous tones, hi C presented to the left ear and a low C presented
to the right ear, the left and right spatial locations become active, priming their
corresponding pitch stream layers. This in turn causes the left stream to capture
the hi C tone and the right stream to capture the low C tone. For the next two
simultaneous tones, a B presented to the right ear and a D presented to the left
ear, both the left and right channels are still equally active, which causes both the
left and right pitch stream layers to remain equally primed. Now, due to frequency
proximity in the spectral stream layer, the B will be grouped with the hi C tone,
and the D will be grouped with the low C tone. Thus, due to equal activation of the



129

left and right spatial locations, grouping based on frequency proximity overcomes
grouping based on spatial location. Similarly, the rest of the tones in the sequence

will be grouped based on proximity, leading to the bounce percept.

4.7 Summary

This chapter presented a model of auditory scene analysis that suggests how the
brain segregates overlapping auditory components using pitch cues to create different
mental objects. The model is shown to qualitatively replicate listeners’ percepts
of hearing two streams for two inharmonic tones, the continuity illusion, a bounce
percept for crossing glides even if the intersection point is replaced by silence or noise,
and the “M” and inverted “V” percept for the Steiger (1980) diamond stimulus even
if the bifurcation points are replaced by noise. This chapter also presented how
spatial cues can be incorporated into the model. While the extended model has been
outlined, it needs to instantiated to verify that it is capable of producing correct
percepts, such as the Deutsch (1975) scale illusion.

While the model is capable of qualitatively producing correct responses for the
stimuli mentioned above, the model needs to incorporate other mechanisms in order
to emulate other phenomena. The existing model does not contain any onset or offset
cues to help create more veridical percepts, e.g. the spectral layer decays slowly at
the offset of a tone. In addition, the onset/offset cues can influence the segregation
process, e.g. the continuity illusion of hearing a tone in noise can be destroyed by
decreasing or increasing the amplitude of the tone at the onset/offset of the noise.
Another set of data that needs to be investigated consists of how the addition of
harmonics can help overcome grouping by proximity, e.g. the addition of harmonics
to one glide in a crossing glide stimulus leads to a cross percept and not a bounce

percept. Finally, no learning exists in the model, and thus an exploration of how an
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organism can learn to self-organize this substrate for auditory scene analysis needs

to be explored.
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